
GhOST: a GPU Out-of-Order Scheduling Technique
for Stall Reduction

Ishita Chaturvedi1, Bhargav Reddy Godala1, Yucan Wu1, Ziyang Xu1,
Konstantinos Iliakis2, Panagiotis-Eleftherios Eleftherakis2, Sotirios Xydis2, Dimitrios Soudris2,

Tyler Sorensen3, Simone Campanoni4, Tor M. Aamodt5, David I. August1

1Princeton University, USA, 2National Technical University of Athens, Greece, 3UC Santa Cruz, USA,
4Northwestern University, USA, 5University of British Columbia, Canada

Abstract—Graphics Processing Units (GPUs) use massive
multi-threading coupled with static scheduling to hide instruction
latencies. Despite this, memory instructions pose a challenge
as their latencies vary throughout the application’s execution,
leading to stalls. Out-of-order (OoO) execution has been shown
to effectively mitigate these types of stalls. However, prior OoO
proposals involve costly techniques such as reordering loads and
stores, register renaming, or two-phase execution, amplifying
implementation overhead and consequently creating a substantial
barrier to adoption in GPUs. This paper introduces GhOST,
a minimal yet effective OoO technique for GPUs. Without
expensive components, GhOST can manifest a substantial portion
of the instruction reorderings found in an idealized OoO GPU.
GhOST leverages the decode stage’s existing pool of decoded
instructions and the existing issue stage’s information about in-
structions in the pipeline to select instructions for OoO execution
with little additional hardware. A comprehensive evaluation of
GhOST and the prior state-of-the-art OoO technique across a
range of diverse GPU benchmarks yields two surprising insights:
(1) Prior works utilized Nvidia’s intermediate representation
PTX for evaluation; however, the optimized static instruction
scheduling of the final binary form negates many purported
improvements from OoO execution; and (2) The prior state-
of-the-art OoO technique results in an average slowdown across
this set of benchmarks. In contrast, GhOST achieves a 36%
maximum and 6.9% geometric mean speedup on GPU binaries
with only a 0.007% area increase, surpassing previous techniques
without slowing down any of the measured benchmarks.

Index Terms—GPU, Parallelism, out-of-order execution, GPU
Microarchitecture, low overhead out-of-order execution

I. INTRODUCTION

Graphics Processing Units (GPUs) have significantly en-
hanced the efficiency of computationally intensive applica-
tions, including medical imaging [55], machine learning [30],
and computer vision [48], achieving orders of magnitude im-
provement. This efficiency is attributed to the GPUs’ capability
to (1) support a massively parallel programming model and (2)
reduce latency through concurrency, allowing rapid switching
between concurrent warps. Some Nvidia devices, for instance,
can handle up to 64 warps per core [41], [61], [62].

Despite these capabilities, many GPU applications still
encounter significant stall cycles [2], [31], during which none
of the warps can issue instructions due to data, control, or
structural hazards. Many techniques to address GPU stall
cycles focus on thread-level parallelism. Previous techniques

0 10 20 30 40
% Instuctions issued OoO

Idealized OoO
Efficient OoO

(GhOST)

Fig. 1. Percentage of reordered instructions with idealized OoO execution
(perfect branch prediction, register renaming and load-store queues) and
efficient OoO execution which elides these techniques.

have typically focused on two approaches: The first involves
increasing the number of warps to improve the probability
of finding a non-stalled warp. However, prior work has shown
that doing so may result in worse performance due to increased
resource contention [25], [34], [53]. The second approach
has been to re-prioritize warps to enhance TLP and/or cache
locality [12], [23], [33], [40], [53], [63]. However, all tech-
niques focusing on TLP are limited, in part, because they only
consider the next in-order instruction per warp. Consequently,
the GPU core will stall when the oldest instructions for all
warps encounter stalls.

Recent efforts have employed out-of-order (OoO) execu-
tion, a technique successfully applied to CPUs, to enhance
instruction-level parallelism on GPUs [16], [19], [20], [28],
[66]. While OoO GPU approaches show promising initial
results, they still suffer from inefficiencies, including re-
issuing instructions, saving state resources such as registers
or memory for more complicated warp switches, and making
ISA modifications. Like GhOST, SOCGPU [19] is an inex-
pensive OoO mechanism for GPUs. Developed coincidentally,
it further validates this paper’s goals. While SOCGPU is
implemented mostly in the front-end like GhOST, it has the
constraint that an instruction cannot be removed from the
instruction buffer until it is written back. This has the potential
to fill the instruction buffer and create a type of stall not found
in GhOST. This could explain why SOCGPU experiences
slowdowns while GhOST does not. Thus, another important
contribution of this paper is in demonstrating that a write-back
constraint is unnecessary and should be avoided. LOOG [20] is
the prior state-of-the-art that enables complete OoO execution
for GPUs. However, LOOG requires expensive features like
load-store queues for reordering memory instructions, result
broadcasting, and register renaming.

1

While previous approaches aim to enable CPU-style out-of-
order (OoO) mechanisms on GPUs, GPU applications exhibit
markedly different characteristics (see Section II). Historically,
the first dynamically scheduled processor, the CDC6600 [60],
enabled OoO execution without renaming or speculation back
when resources were far more constrained than today. We
see merit in revisiting such simpler, yet not fully-featured,
designs in the context of today’s throughput architectures
where efficiency is paramount.

We observed that having instructions from independent
warps in the instruction buffer (IB) provides a high level of
flexibility, leading to significant out-of-order (OoO) perfor-
mance without the need for register renaming, bookkeeping, or
speculation. Figure 1 demonstrates that GPUs offer significant
reordering opportunities to hide stalled instructions without
requiring speculation, register renaming, and reordering of
load and store instructions. These results were obtained across
a comprehensive benchmark suite (see Section V) and mea-
suring how many instructions could be reordered in an fully
featured OoO configuration as well as our simpler, and more
efficient, implementation (GhOST).

Building on this insight, this paper introduces GhOST: a
low-overhead, hardware-only OoO technique for GPUs de-
signed to leverage the unique characteristics of GPU architec-
ture to achieve minimal hardware overhead. GhOST is the first
work that utilizes the issue buffer as a large pool of instruc-
tions, thereby increasing the probability for GhOST to find a
ready instruction without the need for the expensive techniques
required by prior work. GhOST splits the instruction scheduler
between the GhOST scheduler and the warp scheduler, leaving
the complexity of the warp scheduler unmodified. This results
in a simple and effective non-speculative OoO engine, which
resides almost entirely in the decode stage.

GhOST outperforms LOOG [20], the prior state-of-the-
art OoO technique while using significantly less area and
power. GhOST achieves a maximum speedup of up to 37%,
with a geometric mean speedup of 6.9% across 28 applica-
tions, demonstrating notable performance improvement in low-
occupancy applications. GhOST does not cause performance
degradation in any evaluated workload. Furthermore, GhOST
has an extremely efficient implementation, requiring only an
area increase of 0.007% and a 1.1707 mW increase in power.
While GhOST is a hardware-only technique, we show that
compiler techniques like loop unrolling and software renaming
work well with GhOST, bringing the OoO performance closer
to idealized OoO execution.

Concretely, our contributions are:
1) A comprehensive study that measures the performance

impact of various out-of-order (OoO) optimizations on
GPU workloads, emphasizing the minimal returns pro-
vided by traditional OoO components (Section VI-F).

2) Through GhOST, we demonstrate that an efficient and
performant OoO implementation can be predominantly
contained within the decode stage while providing ample
scheduling freedom with minimal changes to the inter-
face with other stages (Section IV).

Fig. 2. SASS example of a typical basic block that appears in GPU programs.
The two colors indicate the two independent dependence chains.

3) An extensive experimental study of GhOST compared
to typical state-of-art GPUs and LOOG, the best per-
forming prior GPU OoO mechanism. The study shows
that GhOST outperforms LOOG while using a fraction
of its area and power overhead (Section VI).

The paper is organized as follows: Section II motivates OoO
execution on GPUs and advocates for a new OoO design.
Section III describes the baseline GPU execution model and
micro-architecture. Section IV provides a detailed overview of
GhOST’s design. Section V outlines the experimental setup,
and Section VI presents the evaluation results, including a
comparison with LOOG. Section VII covers related work, and
Section VIII concludes the paper.

II. MOTIVATION

GPU’s performance comes from massively parallel pro-
gramming and using TLP to hide latencies. However, some
modern GPU workloads lack sufficient TLP to fully utilize
GPU resources. Nvidia’s introduction of Multi-Process Service
(MPS) [42] aims to enhance TLP through the concurrent
execution of multiple processes on the GPU. However, it falls
short in improving the performance of individual applications,
underscoring the importance of ILP enhancements. Despite the
significant hardware support for TLP in GPUs, there remains
untapped potential for exploiting instruction-level parallelism
(ILP) in these devices. Previous studies have explored tech-
niques such as out-of-order execution [16], [20], [28], [66] and
thread coarsening [4], [38], [56] to enhance ILP, with the goal
of improving stall hiding.

To illustrate opportunities for Instruction-Level Parallelism
(ILP), consider the SASS code snippet from the single-source
shortest path (SSSP) benchmark in the Pannotia suite [6], as
shown in Figure 2; some details have been omitted for clarity.
This code pattern, found in GPU workloads, involves multiple
load instructions from different load-use chains. The compiler
interleaves these chains to increase the distance between loads
and their use. This block repeats several times in the critical
loop of the SSSP benchmark. Figure 3 displays the histogram
of latencies for the load instructions shown in Figure 2. The

2

TABLE I
RELATED WORK COMPARISON

Technique No ISA Change No in-order to OoO
mode switching

Low Hardware
Overhead

Speedup evaluated with SASS

Perfect OoO 22% with perfect branch prediction, unbounded register re-
naming, and perfect memory alias checking

Warped
Pre-Execution [28]

No SASS reported

MIPSGPU [66] No SASS reported

LOOG [20] 16.5% slowdown (SASS §VI-G), LOOG shows significant
slowdowns after optimized compilation with SASS. 16%
speedup on PTX.

HAWS [16] No SASS reported

GhOST [This Work] 6.9%

0 500 1000 1500 2000 2500
Latency (Cycles)

100

101

102

103

104

Fr
eq

ue
nc

y

PC
1
2
3
4
6
9

Fig. 3. Histogram showing the variable load latency during program execution
from Figure 2.

histogram was plotted by collecting load latencies for every
instance of the load instructions in Figure 2 being executed
using the AccelSim [26] simulator.

The wide range of latencies poses a challenge for stati-
cally placing loads to achieve optimal latency hiding. While
compilers attempt static scheduling to hide these latencies,
achieving a universally optimal schedule for every basic block
execution remains challenging. In contrast, out-of-order (OoO)
execution dynamically issues ready instructions as operand
values become available, offering a more adaptable approach.

A. Idealized OoO Performance on GPUs

We measured the idealized performance of OoO execution
on GPUs, leveraging perfect branch prediction, perfect mem-
ory aliasing, unbounded register renaming, and a deep reorder
queue. Figure 4 illustrates the speedup potential offered by
this idealized OoO across a large benchmark suite. The figure
demonstrates a geometric mean of 22% using the mentioned
optimizations. OoO identifies independent chains at runtime

and achieves performance gains by adapting to the latency
experienced per warp. Thus, our results show that there is a
significant performance gain to be had with OoO execution;
however, it must be optimized for the GPU architecture. This
speedup sets an upper limit to the performance that can be
obtained by OoO execution.

B. Existing GPU Out-of-Order Approaches

Previous research has demonstrated the effectiveness of
out-of-order (OoO) execution on GPUs, but these techniques
have come with a high hardware cost to improve GPU
performance [16], [20], [28], [66]. Register renaming was a
common technique used to eliminate false dependencies in all
prior work approaches, while some also implemented mem-
ory instruction reordering using alias checking or speculative
execution, adding considerable hardware overhead [16], [20].
Additionally, some techniques required two-phase execution,
switching between in-order and OoO modes, necessitating
extensive hardware to save the state of the GPU during mode
switches [16], [28], [66].

The best-performing (as self-reported) proposal,
LOOG [20], has a self-reported speedup of 16%. However,
the evaluation is done using the schedule provided by
Nvidia’s intermediate representation (PTX), and does not
include the additional compiler optimizations when lowering
to machine-code SASS. When evaluating with SASS,
LOOG demonstrates a 16.5% slowdown. The compiled
SASS code has already optimized for target GPUs and has
shown more Instruction Level Parallelism than PTX [26].
Our approach thus navigates a more complex optimization
landscape, contrasting with previous studies that relied on
PTX. Additionally, LOOG would increase the area by at
least 1.29% compared to a baseline GPU architecture that
employs operand collectors, and an unreported (but possibly
significant) impact on clock frequency due to the introduction
of long wires for result broadcast. Moreover, LOOG requires
repurposing operand collector units, originally intended
to enable a multiported register file [35], [36], to enable
OOO execution. However, recent GPUs instead employ a

3

IB
FS

LPS
LIB

RAY
STO

BFM
CNV

DCT
DES

MND
MTM

MW
K FW

SSSP
BAK

RBF
B+T

DW
T

GAS
LAV

LUD
MYO NN

PFF
SRA CN

GRU
LSTM

GEO
1.0

1.2

1.4

1.6
Sp

ee
du

p

ISPASS PAGODA PANNOTIA RODINIA TANGO

2.70 1.97 1.75 1.98

Fig. 4. Idealized performance of OoO execution on GPU.

software-managed operand reuse cache [1], [12], [13], [18],
[22] likely worsening overheads and complexity for LOOG.

This paper presents GhOST, a low-overhead OoO approach
that requires significantly less area while demonstrating su-
perior performance compared to previous techniques. Table I
presents a comparison between GhOST and prior work, high-
lighting the effectiveness of GhOST’s design. GhOST does
not require any modifications to the Nvidia ISA, making it
immediately implementable and is non-speculative. It does not
require register renaming and load-store queues and does not
switch between OoO and in-order modes during execution.
GhOST achieves 6.9% perfromance gain with only a 0.007%
area increase while outperforming state-of-the-art prior work.

III. BASELINE EXECUTION MODEL

This section provides an overview of the GPU programming
model and describes the micro-architecture of the baseline
GPU pipeline modeled in Accel-Sim, which serves as the basis
for the GhOST model.

GPU programming model: A GPU program consists of host
code that executes on the machine’s CPU and device code
that executes on the GPU. The device code, called a kernel,
is executed in a Single Instruction, Multiple Threads (SIMT)
manner [1], [29]. A thread is the basic unit of computation.
Threads are grouped in disjoint sets, called warps, that execute
in lock-step: they synchronously execute the same instruction
and share a program counter. Warps are grouped into disjoint
sets called blocks or Cooperative Thread Arrays (CTAs).

The SIMT stack, which is private for each warp, handles
the serialization of the execution of divergent control paths.
SIMT stack handling and thread convergence of Nvidia GPUs
were changed after the Volta generation [43]; for the ease of
presentation, we describe GhOST using the older mechanism.

GPU architecture: The GPU architecture consists of many
streaming multiprocessors (SMs). Each SM has up to four
scheduling units, with each warp scheduling unit selecting one
warp to issue an instruction. It utilizes concurrency to hide
latencies; if one warp stalls, the SM can efficiently use fine-
grained multi-threading to switch to another warp to execute
an instruction. The ratio of the number of warps active on an
SM to the maximum warps supported by an SM is called warp
occupancy. While high occupancy is almost always desirable,
very high occupancy can lead to slowdowns in some cases due

Warp
Schedulers

SIMT
Stack

Instruction
Buffer

Fetch
Scheduler

ICache

 Issue
Buffer

 GhOST
scheduler Unmodified

Data Path

Removed
Data Path

Added
Data Path

Fetch

Decode Issue

Operand
Collector

Writeback

Execute Legend

Common

Introduced
by GhOST

A

B

C

D

F

G

E

I

J

Register File

CU CU
CU CU

X-bar

Arbitrator

Decode D
is

pa
tc

h
Sc

he
du

le
r

MEM

SFU

SP

Scoreboard

TCU

Dependence
Checker

L

M
K

H

Fig. 5. The GPU pipeline before and after modifications for GhOST.

to increased cache misses and memory contention [25], [34],
[53].

The GPU offers various on and off-chip memory structures
to support program execution. Each SM has its own L1 cache,
shared memory, and various specialized memory regions [45].
All SMs share a common L2 cache, and misses to the L2 are
serviced by the off-chip DRAM. Each thread is assigned a set
of registers for the entirety of its execution, allowing for faster
context switching in the GPU since register file states do not
need to be saved. Due to the large number of threads each SM
can support, each SM has a large number of registers (64,000
32-bit registers for Nvidia RTX 2060S).

GPU Streaming Multiprocessor (SM) Micro-Architecture:
We consider the baseline SM micro-architecture to be the one
used in Accel-Sim [26] when configured to model the Nvidia
RTX-2060 Super GPU. The overview of the model is shown
in Figure 5. It consists of six stages: fetch, decode, issue, read
operands, execute, and writeback.

Fetch and Decode: The fetch scheduler A selects warps
waiting to access the instruction cache (ICache) B and
executes its fetch request; in the next cycle, the fetched
instructions are decoded C . A dependence bit-vector marks
any RAW or WAW dependencies between the registers of this
instruction and any in-flight instructions or older instructions
in the IB [8]. The decoded instruction, along with the depen-
dence bit-vector, is placed in the IB, and the valid bit for the
instruction is set. The IB has space to hold two instructions
per warp.

Issue: Each SM has multiple warp scheduling units E .

4

Arbiter

Instruction
Buffer

Dependence
Checker

Writeback
Insert(select)

B0 B2 B3 B4 B6 B7B1 B5 Issue
Buffer

GhOST scheduler

2

DecodeAdded by
GhOST

Unmodified

Warp scheduler

1

3
4

5

6

7

Issue
Update

ControlFlag

LocationPointer

Fig. 6. Architectural diagram for GhOST modifications at the decode stage.

In each cycle, the warp scheduler selects one warp from
its assigned warps and issues an instruction from it. The
warp schedulers can be instantiated with various policies.
The RTX 2060S warp schedulers as modeled by AccelSim
use the greedy-then-oldest (GTO) scheduling policy, where
instructions from one warp are prioritized in every cycle until
the warp stalls and the scheduler moves on to the next warp.

An instruction is issued when: (1) its program counter (PC)
matches the PC expected by the SIMT stack; (2) it has no
data dependencies; and (3) it secures available issue-pipeline
registers (addressing structural hazards). In recent GPUs, warp
schedulers issue one instruction per cycle from the selected
warp. As such, this paper models the RTX 2060S device
to issue only one instruction per cycle. After issuing the
instruction, the SIMT stack G [10], and the scoreboard are
updated.

Read Operands: After issue, instructions are allocated space
in the Collector Unit (CU) H for operand collection and are
kept in the CU till all operands are collected.

Execute: The GPU has different types of execution units
I . Compute instructions are sent to the Scalar Processing

Units (SPs), special function units (SFUs), or tensor core units
(TCUs). Memory operations are forwarded to the Memory
Unit (MEM).

Writeback: After executing, instructions issue a written
request to the RF arbitrator and exit the pipeline J . Finally,
the scoreboard entry for the instruction is cleared and the
dependence vector bits for instructions waiting in the IB for
the released registers are cleared.

IV. GHOST

This section presents GhOST, a non-speculative,
lightweight, hardware-only Out-of-Order (OoO) instruction
scheduling technique designed to reduce GPU stalls. GhOST
works with existing warp-scheduling techniques by selecting
an unblocked instruction from each warp to be considered for
issue by the warp scheduler.

For an instruction to be issued OoO, it must not have any
dependence conflicts with issued in-flight instructions, as well

TABLE II
DECODE CHECKER CONFIGURATION

Field Bits Usage

Valid 1 Instruction has no control hazard
Index 3 Tracks age of instructions
Mask 32 Tracks active threads for the instruction
IB-dep 11 Checks for dependence with an older

instruction in the IsB
Instruction 64 Decoded instruction to be executed

Combined 111

as older instructions that are still waiting to be issued in the
IsB. Figure 6 shows the GPU pipeline modifications at the de-
code stage made by GhOST to enable OoO execution. GhOST
selects instructions in-order from the instruction buffer 2 after
they are decoded by the decoder 1 and places them in a
time-shared Dependence Checker (DC) 3 . The DC marks
any dependence of this instruction with in-flight instructions
and instructions currently in the IsB 5 to stop any incorrect
OoO execution. Additionally, it ensures no reordering of load
instructions against stores and the correct execution of control
instructions.

After dependence checking, the instructions are placed in
the IsB. The time-shared GhOST scheduler 6 selects and
stores 2 instructions per warp, which do not have any depen-
dence conflicts with in-flight instructions and older instructions
in the IsB in the Instruction Table (ITab) which is contained
within the GhOST scheduler. The warp scheduler 7 remains
unmodified and looks at one instruction per warp in the ITab
to be considered for issue. Details of these structures are
explained below.

A. Dependence Checker

Figure 7 shows the hardware diagram of the DC, which is a
time-shared structure for warps in a scheduler. Each scheduler
has four DCs, equal to the decode throughput. The DC
comprises of 8 IB-dep Calculation Logic (IB-Calc) structures.
Each IB-Calc concurrently checks for any WAR, RAW, and
WAW dependence on a register used by this instruction against
registers used by instructions of the same warp in the IsB.
This is in addition to the RAW and WAW dependence checks
performed in the baseline with in-flight instructions. Doing
so ensures the correct prevention of incorrect Out-of-Order
(OoO) issuing of instructions from the IsB. If any dependence
is found between the instruction in the DC and any instruction
in the IsB, the IB-dep bit-vector entry corresponding to the
instruction in the IsB is set to 1. It also Additionally, it
prevents the reordering of loads against stores and stops
OoO execution till control instructions are resolved. Details
of this are discussed below. When the DC has space, the
oldest instruction in the IB from a warp, based on the decode
scheduler, is placed in the DC. The DC sets the following bits
for an instruction before it is placed in the IsB:

• Valid: Validity of instruction.
• Mask: The mask for the threads in the warp is copied

from the SIMT stack.

5

B0 B1 B7

W0

W2

W4

Source1IsStore Source2 Source3 Destination

Control Flag

Other FieldsW1

W3

W5
W6
W7

IsBarrier

Source1

Source3

Source2

Destination

Idx

Mask

=

=

=
=

=

= =

LocationPointer

Isload

SIMT stack

IB
-dep

IdxVal

Valid

Instruction

Arbiter

Insert(select)

D
ependence C

hecker

Issue Buffer
IsLoad

IsStore

IB-dep Calculation Logic (IBCalc)

IBCalcIBCalc

A
rbiter

Instruction B
uffer

Fig. 7. Dependence Checking of new instruction with one instruction
updating its corresponding IB-dep bit in IB-dep vector.

• IB-dep: Bit-vector where each bit corresponds to an
instruction position in the IsB and is set by an IBCalc
and a bit for each register to check if it depends on an
in-flight instruction (discussed later).

• Instruction: The decoded instruction.
• Idx: Bits to track the order in which instructions were

placed in the IsB for a warp.
Table II shows the breakdown of the total bits per instruction
in the DC.

Each IB-Calc unit performs the following checks against
the corresponding IsB instruction before setting its bit in the
IB-dep vector:

1) Data Dependencies: In addition to keeping track of any
RAW and WAW dependencies with in-flight and pending
IsB instructions as in the baseline, it also checks for any
WAR dependencies of this instruction with any older
instruction in the IsB. To keep track of dependencies in
the IsB, the read registers of the instruction in the DC
are checked against the write registers of the instruction
in the IsB to identify RAW hazards. Similarly, the write
register of this instruction is checked against the read and
write registers of the instructions in the IsB to identify
WAW and WAR hazards. If any dependence is found,
the bit in the IB-dep vector corresponding to the hazard-
causing instruction in the IsB is set to 1.

2) Memory Instructions: GhOST enforces memory in-
structions to execute in-order except for load-load pairs.
This implies that load instructions to the same addresses
can also be reordered, which is often not allowed in
memory consistency models. However, the only way a
thread can observe if two load instructions from the
same address have been reordered is if another thread
writes to the location. However, this would be a data
race [37], and the load re-ordering is allowed. GhOST
does not reorder instructions marked as atomics by the
compiler as this would violate memory model semantics.
The IsLoad and IsStore bits are used to determine if the

instruction is a memory instruction. If the instruction
in the DC is a load or a store instruction, and the
instruction in the IsB it is being compared against is a
store instruction or an atomic memory instruction, then
the DC IB-dep bit vector entry corresponding to the IsB
memory instruction is set to 1. Since instructions are
issued only if their IB-dep bit vector is 0, this ensures
that only load-load re-orderings are allowed.

Control Instructions: GhOST does not implement branch
prediction. Perfect branch prediction leaves the performance
of GhOST virtually unmodified (see Table V). Additionally,
speculative execution comes with the additional complexity of
enabling rollback for thousands of threads on mis-speculation.

GhOST allows the reordering of branch instructions with
older instructions in the IsB while respecting all dependencies.
Instructions after a branch instruction are not issued until the
branch is resolved, avoiding any speculation. The Mask for the
branch instruction is popped from the SIMT stack and placed
in the DC, which is copied to the IsB when the instruction
is moved. This avoids the serialization of instructions against
branch convergence points.

Synchronization Instructions: When a synchronization
instruction enters the DC, it is not moved to the IsB until
all the instructions from the IsB have been issued. When the
synchronization instruction (e.g., syncthreads) is moved
to the IsB, the control flag is raised, and new instructions are
not moved to the IsB. After the synchronization instruction
has been issued and the branch has been resolved, the control
flag is unset, and instructions can be moved from the IB to
the DC.

Mask and Idx: The thread mask for the instruction is
picked up from the SIMT stack, and the entry is popped from
the SIMT stack. The IdxVal is copied as the Idx in the DC,
and the IdxVal counter for the warp is incremented.

B. Issue Buffer

Instructions are moved from the DC to the IsB from where
they are selected for issue using the GhOST scheduler. When
an instruction is moved into the IsB, it is placed in an empty
slot pointed to by the Location Pointer for the warp, which
is a FIFO queue of locations of empty IsB slots for the
warp. The Location Pointer then points to the next empty
location or marks the IsB as full, so new instructions are
not moved from the DC to the IsB. Index bits are used to
track the order of instructions. The IsB is modeled as 8-way
banked structure, and each entry of a given bank corresponds
to a different warp. Instructions are read from the IsB by
the GhOST scheduler to find valid instructions with no data
dependence, which can be considered for issue by the warp
scheduler. When an instruction is issued from a warp, the IB-
dep bits corresponding to the issued instruction are set to 0
for the instructions in the IsB for that warp.

C. GhOST Scheduler

GhOST introduces the GhOST scheduler which is a time-
shared structure across warps that serves two functionalities:

6

1) It selects up to two instructions per warp from the IsB that
do not have a data dependence on any older instructions in the
IsB and in-flight instructions. 2) It buffers these instructions in
the instruction table (ITab) for the warp scheduler to consider
during the issue stage scheduling. The selection logic involves
choosing instructions for a given warp at any given time. The
GhOST scheduler selects a warp to place instructions in the
ITab if 1) There was a writeback to the warp or 2) the warp
has empty space in the ITab. The time-shared nature of the
GhOST scheduler reduces the area and power overhead of
implementing GhOST. Additionally, it leaves the interface to
the warp scheduler unmodified.

a) Selecting Warp for Dependence Checking: The
GhOST scheduler maintains a Warp-WriteBack (WWb) bit-
vector and an ITabEmpty (ITE) bit vector, where each bit
corresponds to a warp. When a warp has a write-back, the
corresponding bit in the WWb is set. When a warp has empty
space in the ITE, the corresponding ITE bit is set to one. The
ITE bit is unset for a warp after instructions are placed in the
ITab.

Inst0

OSel

Valid BankId Inst Valid BankId Inst

Inst1 Inst2 Inst3 Inst4 Inst5 Inst6 Inst7

OSel

OSel

Warp Scheduler

GhOST Scheduler

Issue Buffer

DepVal DepValOldest Second Oldest

Instruction
Table

Fig. 8. The time-shared GhOST scheduler.

DepVal

Register Dependence Check
(RDC)

Valid S1 S2 S3
IB-Dep Source Regs

Fig. 9. Register dependence checking hardware for the GhOST scheduler.

b) Selecting Ready Instructions: The hardware imple-
mentation of the GhOST scheduler is shown in Figure 8. When
the GhOST scheduler selects a warp (as described above),
the Register Dependence Checker (RDC) is used to check for

Idx1 Idx2

Comparator
DepVal1 DepVal2

Idx3 Idx4

Comparator
DepVal3 DepVal4

Comparator

OldestIdx

Comparator

Comparator

Comparator

SecondOldest

2 Oldest Instruction Selection (OSel)

DepValOldestIdx DepValSecondOldest

O-OlderIdx after comparison
N-NewerIdx after comparison

O ON N

O

O

Fig. 10. Oldest Instruction selection hardware for the GhOST scheduler.

data dependencies (See Figure 9). The IB-Dep vector of each
instruction in the warp is checked for data hazards with another
instruction in the IsB or any in-flight instructions.

Additionally, it is checked if the instruction is valid (See
Figure 9). If the instruction has no data dependencies and
is valid, the RDC gives an output of 1. This output is fed
into the OSel (see Figure 10). The OSel selects the two
oldest instructions with no data dependencies. It places the
instructions in the ITab, sets the bit of the placed instructions
as 1, and stores the bank id of the location of this instruction
in the IsB.

c) Issuing Instructions: The warp scheduler selects in-
structions for issue from the ITab. When an instruction is
issued from the ITab, for all the instructions in the IsB
belonging to the same warp as the issued instruction, the IB-
dep bit corresponding to the issued instruction is set to 0.
This marks all WAR dependencies of the issued instruction
on newer instructions in the IsB as resolved. RAW and
WAW dependencies of in-flight and older IsB instructions
are checked against the dependence vector before issue (same
as baseline), ensuring correct execution. Additionally, for all
instructions from the warp with an idx value greater than the
idx of the issued instruction, the idx value is reduced by one.
The entry of this instruction in the IsB is marked as invalid,
and the bank id is added to the Location Pointer queue for the
warp.

D. Warp scheduler

The warp scheduler is unmodified by GhOST. The warp
scheduler considers the oldest ready instruction pointed to by
the GhOST scheduler. If the GhOST scheduler has not marked
any instruction as ready for issue for a warp, then the warp
scheduler considers the oldest instruction for the warp. The
warp scheduler checks for any structural hazards before issuing
an instruction for operand collection.

E. Software Optimizations for OoO Execution

GPUs boast a vast register space, offering up to 255 registers
per thread [51]. However, this potential is often not fully

7

harnessed during program execution [21], [27]. By leveraging
these underutilized register files, the compiler can enhance
OoO performance through strategic loop unrolling and register
renaming, thereby mitigating false dependencies. This opti-
mization broadens the scope for reordering in GhOST, leading
to a marked improvement in Out-of-Order performance, as
detailed in Section VI-F.

F. Exception Handling:

Nvidia GPUs have very limited support for exception han-
dling [50], and the process running on the GPU is terminated
on encountering errors [47]. When a warp encounters a page
fault, the page fault is treated as a long stall on Nvidia
GPUs [44]. Since GhOST is non-speculative, it can handle
page faults in GPUs without any modifications. Like current
GPUs, GhOST can return the error code for an exception
during execution. However, below, we describe how to add
support for precise exceptions if needed.

GhOST-Precise: GhOST can be extended to support OoO
execution with precise exception handling for virtual memory
in the event kernel-level context switching [52], [58] on page
faults is desirable. Prior work, iGPU [39], explored how to
support demand paging exceptions in GPUs by exploiting
idempotent code regions in the context of in-order instruction
execution. An idempotent instruction sequence is one that can
be re-executed without changing the result. Building on the
insights of iGPU, GhOST-Precise utilizes compiler support
to mark non-idempotent instructions and adds two additional
constraints to GhOST:

• Load instructions are not reordered against each other
• Non-idempotent instructions are not issued till all prior

load instructions have hit the TLB.
The additional hardware required to support GhOST-Precise

is described below:
• LoadCounter: Each warp has a load counter to maintain

the number of loads in the pipeline which have not done a
TLB check. When a load instruction enters the DC unit
it increments the LoadCounter, and decrements it after
the TLB check.

• InstLoadCounter: When an instruction enters the DC
the value of the LoadCounter is copied into the Inst-
LoadCounter and placed with the instruction in the IsB.
When a load instruction for a warp has a TLB hit the
InstLoadCounter for all entries in the IsB for the warp
are right-shifted by 1 bit.

Fig. 11. GhOST-Precise does not issue non-idempotent instructions until all
prior load instructions hit in the TLB. Legend: OI: OoO issue, II: In-order
issue, TLP: TLB hit, WB: writeback.

If an instruction is marked as non-idempotent by the com-
piler, it can be issued only after the InstLoadCounter value
for that instruction is 0. Figure 11 shows how instruction 3
which is non-idempotent is not issued OoO against instruction
1 even though there is no dependence between them till
instruction 1 hits in the TLB. If instruction 1 missed in the
TLB, GhOST-Precise can start re-execution from instruction
1, re-issue instruction 2 as it is idempotent and then issue
instruction 3.

G. GhOST in Action

Figure 12 shows the movement of instructions between
the IB, DC, and IsB as a small program executes OoO
using GhOST. Figure 12(a) shows an execution cycle where
instruction 1 has been issued. Instruction 2 is stalled as it has a
RAW dependence on instruction 1. The GhOST scheduler has
marked instruction 2 as the oldest instruction ready for issue,
and instruction 4 as the next oldest ready for issue in the
previous cycle. The warp scheduler issues instruction 3 out-
of-order after checking for structural hazards. Warp 0 goes to
the GhOST scheduler to get the new oldest ready instructions.

Figure 12(b) shows the next cycle, where instruction 6 is
moved from the DC to the IsB, and instruction 7 is moved
into the DC. The GhOST scheduler is pointing to instruction
4 as the oldest ready instruction, which is issued OoO from
the warp scheduler.

V. EVALUATION METHODOLOGY

TABLE III
GPU MICROARCHITECTURAL PARAMETERS

Parameter Nvidia RTX 2060S

Simulator Accel-Sim
Generation Turing
SM clock Frequency 1905 MHz
SMs/GPU 34
Warp Schedulers/SM 4
Warp Scheduling Policy Greedy-Then-Oldest (GTO)
SIMT lane width 32
Max #warps/SM 32
Max #threads/SM 1024
Max Registers/SM 65536
Register File Size 256 KB, 34k 32bit Registers
L1 Cache Size 64KB
IB Size 4 inst/warp
Inst. Issue/Warp 1

Parameter Nvidia RTX 3070

Simulator Accel-Sim
Generation Ampere
SM clock Frequency 1132 MHz
SMs/GPU 46
Warp Schedulers/SM 4
Warp Scheduling Policy Greedy-Then-Oldest (GTO)
SIMT lane width 32
Max #warps/SM 48
Max #threads/SM 1536
Max Registers/SM 65536
Register File Size 256 KB, 34k 32bit Registers
L1 Cache Size 64KB
IB Size 4 inst/warp
Inst. Issue/Warp 1

8

Ready Valid Mask MemCheck IB-dep
Ready Valid Mask MemCheck IB-dep SB

Issue Buffer
Ready Valid Mask Mem IB-dep Instruction

Ready Valid Mask MemCheck
Ready Valid Mask MemCheckInstruction Buffer

Ready Valid Instruction

Scoreboard
Warp

11..111

11..111

11..111

0

Registers

0

1

2

3

Y11

0

01

0

0
0

0

(a) Cycle X:

C ld(Y)

E E+A

D ld(A)

F F+A

C ld(Y)

D ld(A)

E E+A

F F+A

G F+E

Y A+Y

Instructions

1.

2.

3.

4.

5.

6.

0 0 0
1 2 3 4

00

10

00

Idx

00

10

1

11

1

1

1

0

0

1

1

Ready Valid Mask Mem IB-dep Instruction

0 0 1 1
1 2 3 4

000000

Dependence Checker
Y Y+F7.

G F+E

Y Y+F

0 0 0 0

0 0 0 0

0 0 0 0

1

11..1110 00

1

0

0

Warp Scheduler

Instruction
selected by

GhOST
scheduler

Idx
01

GhOST Scheduler (2 entries/warp)

Ready Valid Mask MemCheck IB-dep
Ready Valid Mask MemCheck IB-dep SB

Issue Buffer
Ready Valid Mask Mem IB-dep Instruction

Ready Valid Mask MemCheck
Ready Valid Mask MemCheckInstruction Buffer

Ready Valid Instruction

Scoreboard
Warp

11..111

11..111

11..111

0

Registers

0

1

2

3

Y,D11

0

01

0

0
0

0

(b) Cycle X+1:

C ld(Y)

E E+A

G F+E

F F+A

0 0 0
1 2 3 4

00

00

00

Idx

00

10

1

11

1

1

1

0

1

0

1

Ready Valid Mask Mem IB-dep Instruction

1 0 0 1
1 2 3 4

000000

Dependence Checker

0 0 1 1

0 0 0 0

0 0 0 0

1

11..1110 00

1

0

0

Warp Scheduler

Idx
01

GhOST Scheduler (2 entries/warp)

11..111 11..111 Y Y+F

1

2

3

4

5

6 1 6

2

3

4

5

...

Fig. 12. Execution of a small program on GhOST.

IB
FS

LPS
LIB

RAY
STO

BFM
CNV

DCT
DES

MND
MTM

MW
K FW

SSSP
BAK

RBF
B+T

DW
T

GAS
LAV

LUD
MYO NN

PFF
SRA CN

GRU
LSTM

GEO
1.0

1.1

1.2

Sp
ee

du
p

ISPASS PAGODA PANNOTIA RODINIA TANGO

1.59

0

10

20

St
al

l R
ed

uc
ed

 (%
)

&
 O

cc
up

an
cy

 (%
)

75% 22%69% 37% 90% 48% 22% 75% 53% 94% 67% 83% 54% 93% 50% 84% 55% 27%
Ghost Occupancy Scheduler Stall Reduced

Fig. 13. The performance of GhOST and the reduction in scheduler stalls with OoO execution plotted against the occupancy of applications on the simulated
RTX 2060S GPU.

IB
FS

LPS
LIB

RAY
STO

BFM
CNV

DCT
DES

MND
MTM

MW
K FW

SSSP
BAK

RBF
B+T

DW
T

GAS
LAV

LUD
MYO NN

PFF
SRA CN

GRU
LSTM

GEO
0.9
1.0
1.1
1.2
1.3
1.4

Sp
ee

du
p

ISPASS PAGODA PANNOTIA RODINIA TANGO

1.481.591.591.59
4 8 16 32

Fig. 14. The performance variance of GhOST-Precise with changing IsB size on the simulated RTX 2060S GPU.

This section describes the experimental context used to
evaluate GhOST.

Modelling GhOST: GhOST is implemented on top of the
simulated Nvidia RTX 2060S and RTX 3070 GPUs, which are
included with the Accel-Sim [26] simulator; Table III shows
the microarchitectural parameters of the GPU.

To implement GhOST in the simulator, a dependence
checker stage was added between the IB and the IsB. The

GhOST scheduler was connected to IsB, the scoreboard and
the warp scheduler. OoO control logic was added for the
GhOST scheduler. The depth of the decoder, IB and IsB was
parameterized to study the effect of increasing IsB size on
GhOST.

Benchmarks: 28 GPU applications from standard bench-
mark suites, namely Rodinia [7], GPGPU-Sim [26], Pannotia
[6], and Tango [24] were used to evaluate GhOST.

9

TABLE IV
EVALUATED BENCHMARKS

Benchmark Suite Benchmarks

Ispass [26] bfs (IBFS), LPS, LIB, RAY, STO

Pagoda [64] beamformer (BFM), DCT, DES,
convolution (CNV), mandelbrot (MND),
matrixMul (MTM), multiwork (MWK)

Pannotia [6] SSSP, Floyd-Warshall (FW)

Rodinia 3.1 [7] b+tree (B+T), dwt2d (DWT), Gaussian (GAS),
lavaMD (LAV), LUD, NN, bfs (RBF),
myocyte (MYO), particlefilter-float (PFF),
srad-v1 (SRA), backprop (BAK)

Tango [24] CN, GRU, LSTM

The benchmarks cover various GPU domains, including
irregular graph processing and large-scale neural networks,
and are classified in Table IV. SASS traces were collected
on the Nvidia RTX 2060S GPU for these applications to feed
into the simulator. Inputs were selected to maximize the input
size while ensuring that the GPU did not run out of memory
during SASS collection. We could not collect SASS traces
for all benchmarks as the GPU ran out of memory when
running these applications, the NVbit tool [46] which is used
for collecting SASS traces crashed or the application ran for
over six days.

Best Performing Prior Out-of-Order Approach: We
compare GhOST with LOOG [20], which implements a CPU-
style OoO mechanism for the GPU, containing expensive
OoO components, such as register renaming and load-store
queues. The LOOG Accel-Sim implementation provided with
the publication has been used.

VI. EVALUATION OF GHOST
A. GhOST and Application Occupancy

Figure 13 shows the speedup of GhOST over the SASS
baseline, the reduction in scheduler stalls with OoO execu-
tion and the average occupancy for each benchmark on the
simulated RTX 2060S GPU. GPU occupancy measures the
ratio of active warps to the maximum possible warps on
an SM, reflecting the utilization of computational resources.
Both GhOST and the baseline have 4 instructions in the IB.
GhOST gives a speedup of 6.9% over the SASS baseline
on the simulated RTX 2060S GPU. The reduction in the
scheduler stalls when a scheduler cannot find any instruction
ready for issue due to data and/or structural hazards reduces
in proportion to the speedup lent by GhOST using OoO
execution. Although SASS offers the most optimized binary
for the hardware it runs on, GhOST can further improve
the runtime of the programs by dynamically reordering in-
structions, even for applications with high occupancy, while
significantly improving the performance of low occupancy
workloads.

B. GhOST with Various Warp Scheduling Policies

Figure 16 shows the performance of GhOST with three
warp scheduling policies on the simulated RTX 2060S GPU:

RTX 2060S RTX 3070
1.00
1.02
1.04
1.06
1.08

Sp
ee

du
p

4 8 16 32

Fig. 15. The performance variance of GhOST with changing IsB size on
simulated Nvidia RTX 2060S and RTX 3070 GPUs.

Fig. 16. The performance variance of GhOST with different scheduling
policies on the simulated RTX 2060S GPU.

Greedy-the-oldest (GTO) which selects the same warp for
scheduling until it stalls, then moves to the oldest ready warp;
Lose round robin (LRR) which round robins over warps to find
a ready warp for issue; and strong round robin (SRR) which
only looks at the next warp to be considered for scheduling.
As the scheduling policy becomes less aggressive (SRR), the
performance of GhOST improves as OoO execution has a
greater impact on finding instructions that are ready for issue.

C. Sensitivity of GhOST to Issue Buffer Size:

Figure 15 shows that the size of the IsB influences the
performance of GhOST’s OoO execution, while the size of
the IB remains constant on the Nvidia RTX 2060S and
RTX 3070 GPU models belonging to the Turing and Ampere
architecture respectively. GhOST consistently outperforms in-
order execution, and the geomean speedups for an IsB size
of 8 is 6.9% on RTX 2060S and 5% on RTX 3070. As the
depth increases further to 16 and 32 IsB entries per warp, the
performance of GhOST further improves to 7.9% and 7.5%
for RTX 2060S and to 5.9% and 6.5% for RTX 3070 (for 16
and 32 respectively). Even though configurations 16 and 32
perform better than IsB size 8, these configurations increase
the control logic to enable GhOST exponentially. We chose an
IsB size of 8 for GhOST, considering the trade-off between
OoO performance and hardware overhead. GhOST gives 31%
of limit study speedup on RTX 2060S.

Furthermore, performing a sensitivity analysis around IB
size reveals that increasing this size to 8 results in a negligible
performance improvement of 0.09%.

D. GhOST-Precise

Figure 14 shows that GhOST-precise has a small slowdown
due to the constraints added to support precise exceptions for
virtual memory handling. GhOST-precise reduces the geomean
performance to 6.3% on the simulated RTX 2060S GPU.
Increasing the IsB size improves the performance of GhOST-
Precise.

10

E. Area and Power Efficiency

We modeled the design of the Dependence Checker, Issue
Buffer, and the GhOST scheduler in RTL and used Synop-
sys [14] to calculate the area and power of the components
added by GhOST on the 45 nm technology node. The GhOST
units add 1276 um2 of area per scheduler, or 0.173536 mm2

area per GPU. The Nvidia RTX 2060S GPU was developed on
the 12nm technology node and has an area of 445mm2 [59]. To
get the area estimate for GhOST, we use a multiplicative factor
of 0.17 to convert the area analysis to a 14nm technology
node to get an upper limit estimate for the area increase with
GhOST [57]. GhOST increases the area of the GPU by 0.007%
with a 1.1707 mW increase in power.

F. Effect of Various OoO Optimizations on GhOST

Table V delves into a limit study analyzing various opti-
mizations applied to OoO execution on GPUs with a very
deep reorder queue, considering perfect branch prediction, un-
bounded register renaming, and perfect memory address alias
checking. The results highlight that perfect branch prediction
and reordering of load operations against store operations
offer limited performance benefits. Notably, register renaming
enhances performance significantly by expanding the number
of instructions for OoO execution. The performance benefits
from these optimizations are discussed in detail below:

Perfect Branch Prediction: Perfect branch prediction im-
proves OoO execution by enabling extensive instruction re-
ordering without stalling on branches. It ensures correct branch
direction decisions, even in cases involving long-latency oper-
ations for branch resolution. Branch prediction has a limited
impact on the OoO performance of GPUs. Additionally, imple-
menting perfect branch prediction is prohibitively expensive,
requiring the rollback of all threads in a warp in case of mis-
prediction. Due to this high overhead, there has yet to be prior
implementation of branch prediction on GPUs to the best of
our knowledge.

Perfect Memory Alias Checking: Memory alias checking is
crucial for reordering load and store instructions. Implement-
ing perfect alias checking, where address alias information is
known at the time of instruction issue, has limited impact on
OoO performance, as shown in Table V. This implementation
necessitates load-store queues or speculative execution of load
instructions, resulting in high hardware overhead with limited
performance benefits.

Register Renaming: Aggressive register renaming can help
the performance of OoO execution by removing false depen-
dencies. In the perfect register renaming implementation, a
new register is assigned to an instruction at the issue stage
in case of an anti or output dependence from an unbounded
list of free registers. In many GPUs, all warps share a single
physical register file. In Table V, we do not consider the
potential negative impact of reduced warp occupancy that may
be required to free up registers for renaming.

GPUs have a large register space per thread with a max-
imum limit of 255 registers per thread [51]. The GPU reg-
ister file is not fully utilized through the execution of the

program [21], [27]. The compiler can also assist in removing
false dependencies by unrolling loops and using more registers
during the program’s execution. Figure 18 compares the per-
formance gains of unbounded register renaming in hardware
against aggressive unrolling and renaming in software with
a limited set of registers (255 registers per thread) for the
lavaMD and convolution benchmarks which show significant
performance gains by unbounded register renaming. The re-
sults show that while unbounded renaming does outperform
renaming and unrolling done by the compiler, this performance
gap is not significant. This suggests that more aggressive
unrolling and higher register utilization to reduce name de-
pendencies can enable more aggressive OoO execution with
GhOST without implementing register renaming in hardware.

Despite minimal impacts from individual GPU out-of-order
(OoO) optimizations, their collective implementation signif-
icantly boosts performance. Issues like false dependencies
stemming from name conflicts limit gains from alias checking
and branch prediction by hindering OoO instruction issuance.
Integrating register renaming with these optimizations over-
comes these limitations, enabling more aggressive OoO exe-
cution and resulting in significant performance improvements.

G. GhOST against LOOG

The evaluation depicted in Figure 17 and Figure 19 demon-
strates GhOST’s superior performance compared to the state-
of-the-art prior work, LOOG [20] on the RTX 2060S GPU
model. Figure 17 shows that GhOST does not negatively affect
the performance of any applications, unlike LOOG. Results
for the LIB and multiwork benchmarks are missing as LOOG
crashed for the applications. In Figure 19 GhOST shows a
higher maximum performance than LOOG with no slowdowns
on any applications, while LOOG shows a maximum slow-
down 0.35×. The cumulative frequency distribution of LOOG
shows a very high variability in the performance of LOOG
for various applications, while GhOST has a more uniform,
non-negative performance impact on applications.

Although LOOG outperforms GhOST in specific applica-
tions by efficiently renaming registers and reordering memory
instructions, it experiences substantial slowdowns in all other
scenarios. This is due to LOOG’s reliance on the operand col-
lection stage for out-of-order (OoO) execution, where instruc-
tions wait in the reservation station until the write-back phase.
As a result, the operand collector may become congested with
stalled instructions due to true dependencies. This congestion
prevents ready-to-issue instructions from proceeding due to
structural hazards, leading to significant performance degra-
dation. Furthermore, LOOG lacks a specific mechanism for
congestion-aware Compute Unit (CU) allocation, rendering it
highly susceptible to the warp scheduler’s scheduling policy.
In contrast, GhOST does not negatively affect the performance
of any application and is independent of the scheduling policy.
Despite efforts to improve performance by increasing the
operand collector’s size fourfold to 32, it remains smaller than
GhOST’s IsB capacity for holding instructions.

11

TABLE V
EFFECT OF VARIOUS OOO OPTIMIZATIONS ON GHOST ON THE SIMULATED RTX 2060S GPU.

Unbounded Register Renaming

Perfect Memory Alias Check

Perfect Branch Prediction

Speedup % 15.1% 14.4% 13.7% 8% 10.1% 7.4% 7.3% 6.9%

IB
FS

LPS

RAY
ST

O
BFM

CNV
DCT
DES

M

ND
M

TM

FW

SS
SP

BAK
RBF

B+T

DW

T
GAS

LAV
LUD
M

YO
NN
PF

F

SR
A

CN
GRU

LST
M

IB

FS

LPS

RAY
ST

O
BFM

CNV
DCT
DES

M

ND
M

TM

FW

SS
SP

BAK
RBF

B+T

DW

T
GAS

LAV
LUD
M

YO
NN
PF

F

SR
A

CN
GRU

LST
M

GEO

0.7
0.8
0.9
1.0
1.1
1.2
1.3

Sp
ee

du
p

ISPASS PAGODA PANNOTIA RODINIA TANGO ISPASS PAGODA PANNOTIA RODINIA TANGO

1.59

0.63 0.57

1.32

0.70 0.35 0.40 0.59 0.58 0.53

GhOST LOOG

Fig. 17. The performance of GhOST and LOOG on the simulated RTX 2060S GPU.

CNV LAV
1.0

1.2

1.4

1.6

1.8

Sp
ee

du
p

GhOST + Unbounded HW Renaming
GhOST + Loop Unrolling + SW Renaming
GhOST

Fig. 18. Comparison of unbounded register renaming in hardware with
bounded register renaming (255 registers) in software .

0.5 1.0 1.5
Speedup

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

MIN MAX GEO

0.5

1.0

1.5

Sp
ee

du
p

1.01

1.59

1.07

0.35

1.32

0.81

GhOST LOOG

Fig. 19. Performance of GhOST and LOOG against in-order execution on
the simulated RTX 2060S GPU configuration.

LOOG introduces significant complexity to the pipeline
through a register alias table linked to all collector units
for register renaming, load-store queues for memory address
disambiguation across threads, and a result broadcast bus.
These structures need to manage information for every thread
in a warp per instruction, necessitating substantial buffers for
storage and broadcast. LOOG modifies the issue, operand
collector, and writeback stages. In contrast, GhOST avoids
this complexity by making limited modifications to the decode
stage with the DC, IsB, and the GhOST scheduler, eliminating
the need to store per-thread information for each instruction
in a warp.

These findings deviate from their previously published
work, which employed the PTXPlus flag on GPGPU-Sim 3
to simulate SASS, which offers limited support for an older
version of SASS (10+-year-old Nvidia GT200 GPU) [17] and
is incompatible with the newer Pascal architecture they claim
to use for their evaluation. As a result, performance numbers
in the LOOG paper were overestimated due to the unopti-
mized version of SASS modeled by the simulator. Moreover,
we identified and rectified issues related to synchronization
instructions, branches, and dependence checking in their SASS
model implementation in the simulator. We have confirmed our
results for LOOG when using trace-driven SASS simulation
with the LOOG authors.

VII. RELATED WORK

Prior work has explored both software and hardware ap-
proaches to enhance GPU utilization.

A. Scheduling Policies

Prior work explores warp interleavings using various warp
scheduling techniques to improve GPU resource utilization and
reduce stalling. Narasiman et al. [40] propose a Two Level
Scheduler (TLS) combined with a Large Warp Microarchi-
tecture (LWM). TLS helps distribute long-latency stalls over
time, while LWM focuses on creating SIMD-width dynamic
subwarps to improve execution units’ utilization in warp di-
vergence. RLWS [3] proposes a reinforcement learning-based
warp scheduler that can learn and adapt to various workloads.
MASCAR [54] implements a memory-aware warp prioritiz-
ing scheduler with a cache-access re-execution mechanism
to overlap more computation with memory accesses. These
schedulers are typically tailored for specific workloads, such
as cache-sensitive or compute-heavy.

Nvidia’s Shader Execution Reordering (SER) [49] is a
scheduling technique that regroups threads on the fly to reduce

12

execution and data divergence. GhOST can be used with SER
to improve the performance of GPUs further.

Twin-Kernel (TK) [15] optimizes GPU memory access by
compiling altered kernels with varied memory patterns, pairing
them for efficient execution. However, TK’s static nature
requires creating two versions per kernel, not always possi-
ble. GhOST offers a dynamic alternative without workload
assumptions.

HyperQ [5] by Nvidia allows empty SMs to start running
subsequent independent kernels. This enables multiple kernels
to run simultaneously on the GPU, thus reducing the total
run time of the program. However, this does not help address
the stalls each kernel will face. GhOST is compatible with
HyperQ.

Breathing Operand Windows [11] bypasses register file
accesses, passing values directly between instructions within
the same window, improving the rate of instructions being
issued from the OC, and can be used with GhOST to further
improve performance.

B. Warp Throttling Techniques

Many works have studied how multiple warps executing
on an SM affect the performance of the L1D cache, network
bandwidth utilization, and DRAM; and observe that multiple
warps sharing the L1D cache can lead to cache thrashing and
performance degradation. Studies have been done on reducing
the maximum number of active warps at a time on one SM
(TLP throttling) or prioritizing specific warps’ access to shared
resources. Rogers et al. proposed CCWS [53], which uses a
scoring system to identify warps that re-reference their data
in the L1D cache and prioritize their memory accesses.

Dyncta [25] uses a CTA scheduling mechanism based on
the application’s characteristics to limit the number of CTAs
assigned to an SM. This reduces the contention for shared
resources between warps. OWL [23] develops a two-level warp
scheduler with CTA prioritization. LCS [32] develops warp
scheduling techniques to throttle TLP and better utilize mem-
ory resources. PCAL [34] showed that while TLP throttling
improves L1D footprint, it can lead to under-utilization of
other resources and proposed a system to prioritize a subset
of warps to use caches while allowing remaining warps to use
other GPU resources.

Poise [9] uses machine learning combined with a run-time
inference engine to make warp scheduling decisions, optimiz-
ing both the TLP and the memory system performance. Virtual
threads [65] suggest that increasing the maximum number of
CTAs on an SM can favor some applications. GhOST GPU
improves the performance of applications by exploiting the
hidden ILP in applications at the micro-architectural level
using OoO. It thus improves the performance of workloads
with regular and irregular memory access patterns. This com-
plements the existing TLP models.

VIII. CONCLUSION

This paper introduces GhOST, a novel and lightweight out-
of-order (OoO) technique for GPUs primarily residing in the

decode stage. GhOST leverages the decode stage’s pool of
instructions, thereby expanding available instruction choices
and eliminating the need for expensive OoO techniques to
identify reordering opportunities. GhOST introduces instruc-
tion reordering by presenting an alternative instruction to
the warp scheduler through the existing interface rather than
offering the oldest instruction in each warp. The result is a
simple and efficient OoO engine that operates predominantly
in the decode stage. Experimental results on the simulated
Nvidia RTX 2060S and RTX 3070 GPUs using SASS demon-
strate that GhOST outperforms previous GPU OoO techniques,
enhancing GPU performance by 6.9% and 5% across 28
benchmarks, with only a 0.007% increase in area.

ACKNOWLEDGMENT

We thank members of the Liberty Research Group for
their support and feedback on this work. We also thank
the anonymous reviewers for the comments and suggestions
that strengthened this work. This material is based upon
work supported by the U.S. Department of Energy, Office of
Science, Office of Advanced Scientific Computing Research,
under contract numbers DE-SC0022138 and DE-SC0022268.
This material is based upon work supported by the National
Science Foundation under grants CCF-2107257 and CCF-
2107042.

APPENDIX

A. Abstract

This paper’s artifact comprises the source code for the
GhOST OoO execution technique, models tuned for Nvidia
RTX 2060S and RTX 3070 GPUs, SASS traces to run bench-
marks, a pre-compiled LOOG binary, installation instructions,
and the source code of support scripts for reproducing results.
To facilitate easy execution, a Singularity image is provided
to set up the environment. The artifact is available publicly
through an archived repository.

Additionally, the artifact describes the requirements and
contains instructions for evaluating GhOST, which are detailed
in this appendix. A linux operating system with support to run
singulatiy container, Synopsys PrimeTime PX, slurm workload
manager and python is required to test the artifact. Users of
the artifact can reproduce the key GhOST results shown in
Figures 3, 13-17, and 19, and evaluate the area and power
overhead of GhOST.

B. Artifact check-list (meta-information)
• Program: The artifact includes SASS traces of the benchmarks

shown in 4 collected on the Nvidia RTX 2060S GPU using the
Nvbit tool and are publicly available.

• Compilation: GCC 7.5.0 and NVCC V11.6.55.
• Binary: The artifact repository contains pre-compiled LOOG

binary.
• Run-time environment: A Singularity image is provided to

run on Linux. Root access is not required. Python3 is necessary
for analysis. Synopsys is used for area and power overhead
calculation, and Slurm is utilized to run experiments. For
diagram plotting, the required Python3 libraries can be installed
using the following command:

13

pip3 install numpy pandas matplotlib>=3.8.0

Python3, Synopsys, and Slurm are software dependencies that
are not included in the Singularity container.

• Hardware: Machine with > 20 GB RAM.
• Execution: The experiments can take up to 48 hours to

complete.
• Metrics: IPC speedup over baseline configuration calculated

from Accel-Sim stats is the main metric of comparison reported.
• Output: Validation graphs for Figures 3, 13-17, and 19, and

raw numbers for the area and power overhead of GhOST are
provided.

• Experiments: The artifact includes a set of scripts that clone
and build the GhOST repository; download the SASS traces,
LOOG binary, and Verilog files for area and power validation
for GhOST; run the experiments following the experimental
methodology in the paper and finally generate Figures 3, 13-
17, and 19 and give the area and power overhead values.

• How much disk space required (approximately)?: 100 GB.
• How much time is needed to prepare workflow (approxi-

mately)?: 20 mins.
• How much time is needed to complete experiments (approx-

imately)?: The artifact evaluation starts 555 slurm jobs. On a
319-node machine, it took 40 hours to complete all the runs.

• Publicly available?: Yes.
• Archived (provide DOI)?: 10.5281/zenodo.10874714

C. Description

1) How to access:
• The artifact is available at Zenodo at:

– 10.5281/zenodo.10874714
Use the download and installation instructions below to
set up the artifact.

• Download Size : 15 GB
• Will require approximately 55 GB of disk space when

extracted
2) Hardware dependencies:
• A machine with > 20GB memory required.
• A machine with > 100GB disk space required.
• A machine with > 20 cores for faster execution.
3) Software dependencies: Linux operating system with

Singularity container support, Slurm workload manager, and
Synopsys PrimeTime PX is required.

D. Download and Installation

• Execute the following commands to add Synopsys to your
$PATH:
export SYNOPSYS_PATH=/path/to/
licensed/synopsys

export SYNOPSYS_ICC2_PATH=/path/to/
licensed/synopsys-icc2

• Download and setup the system in $BASE_DIR.:
curl -sSL https://raw.githubuser
content.com/ishitachaturvedi/
GhOST-accel-sim-framework/dev/
collect_results_artifact/setup.sh |
bash

This script downloads the the GhOST repository, LOOG
binary, GhOST RTL and evaluation scripts from Zenodo

and builds the GhOST repository. It starts a basic test to
check if the setup is correct.

E. Basic Test

setup.sh starts slurm jobs to check if the setup is correct
and plots the output result after the jobs are complete.

The jobs should take < 10 mins to finish.
To check if the setup is correct please

compare the figure generated in $BASE_DIR/
GhOST-accel-sim-framework/results/
min_example.png against the figure in file $BASE_DIR/
GhOST-accel-sim-framework/gold_files/
min_example.png

F. Experiment workflow

Note: Ensure that the basic test runs correctly before mov-
ing to this step and that you have added $SYNOPSY_PATH
and $SYNOPSYS_ICC2_PATH to your $PATH.

The primary experiments consist of running GhOST in
various configurations and LOOG for performance results, and
Synoposys for calculating the area and power overhead for
GhOST.

The GhOST_artifect_evaluation.sh starts the col-
lection of the performance and GhOST overhead results. To
run the script, please do the following:

cd $BASE_DIR/GhOST-accel-sim-framework
/ghost_scripts

bash GhOST_artifect_evaluation.sh

After it completes the slurm jobs it issues, it generates the
plots, figures, and text files for artifact evaluation.

It can take up to 60 hours to generate the plots.

G. Evaluation and expected results

• Evaluating Figures 3, 13-17, and 19:
The generated Figures will be placed in $BASE_DIR/
GhOST-accel-sim-framework/results. The
corresponding gold files are located in $BASE_DIR/
GhOST-accel-sim-framework/gold_files.

• Area and power overhead for GhOST as shown
in section 6E: The area and power overhead
calculated by Synopsys will be placed in
$BASE_DIR/GhOST-accel-sim-framework/
GhOST-area-calculation/results.
The corresponding gold files are located in
$BASE_DIR/GhOST-accel-sim-framework/
GhOST-area-calculation/gold_files.

H. Experiment customization

Different Makefile flags can be used to build the GhOST
binary and collect results on additional configurations:

• OoO_ON: OoO execution with GhOST
• RENAME_REGS_ON: Turn on perfect register renaming

(needs to be used with OoO_ON)
• branch_prediction_ON: Turn on perfect branch

prediction (needs to be used with OoO_ON)

14

• GhOSTPrecise_ON: Turn on GhOST Precise (needs to
be used with OoO_ON)

• printLDSTLatency_ON: Print latency of load in-
structions

REFERENCES

[1] T. M. Aamodt, W. W. L. Fung, and T. G. Rogers, “General-purpose
graphics processor architectures,” Synthesis Lectures on Computer Ar-
chitecture, vol. 13, no. 2, pp. 1–140, 2018.

[2] J. Alsop, M. D. Sinclair, R. Komuravelli, and S. V. Adve, “GSI: A GPU
stall inspector to characterize the sources of memory stalls for tightly
coupled GPUs,” in 2016 IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS). IEEE, 2016, pp. 172–182.

[3] J. Anantpur, N. G. Dwarakanath, S. Kalyanakrishnan, S. Bhatnagar, and
R. Govindarajan, “RLWS: A Reinforcement Learning based GPU Warp
Scheduler,” arXiv preprint arXiv:1712.04303, 2017.

[4] P. Barua, J. Shirako, and V. Sarkar, “Cost-driven thread coarsening for
gpu kernels,” in Proceedings of the 27th International Conference on
Parallel Architectures and Compilation Techniques, 2018, pp. 1–14.

[5] T. Bradley, “Hyper-Q example,” in NVidia Corporation. Whitepaperv1.
0,. IEEE, 2012.

[6] S. Che, B. M. Beckmann, S. K. Reinhardt, and K. Skadron, “Pannotia:
Understanding irregular GPGPU graph applications,” in 2013 IEEE In-
ternational Symposium on Workload Characterization (IISWC). IEEE,
2013, pp. 185–195.

[7] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and
K. Skadron, “Rodinia: A benchmark suite for heterogeneous computing,”
in 2009 IEEE international symposium on workload characterization
(IISWC). Ieee, 2009, pp. 44–54.

[8] B. W. Coon, P. C. Mills, S. F. Oberman, and M. Y. Siu, “Tracking reg-
ister usage during multithreaded processing using a scoreboard having
separate memory regions and storing sequential register size indicators,”
Oct. 7 2008, uS Patent 7,434,032.

[9] S. Dublish, V. Nagarajan, and N. Topham, “Poise: Balancing thread-level
parallelism and memory system performance in gpus using machine
learning,” in 2019 IEEE International Symposium on High Performance
Computer Architecture (HPCA). IEEE, 2019, pp. 492–505.

[10] A. ElTantawy, J. W. Ma, M. O’Connor, and T. M. Aamodt, “A scalable
multi-path microarchitecture for efficient gpu control flow,” in 2014
IEEE 20th International Symposium on High Performance Computer
Architecture (HPCA). IEEE, 2014, pp. 248–259.

[11] H. A. Esfeden, A. Abdolrashidi, S. Rahman, D. Wong, and N. Abu-
Ghazaleh, “Bow: Breathing operand windows to exploit bypassing in
gpus,” in 2020 53rd Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO). IEEE, 2020, pp. 996–1008.

[12] M. Gebhart, D. R. Johnson, D. Tarjan, S. W. Keckler, W. J. Dally,
E. Lindholm, and K. Skadron, “Energy-efficient mechanisms for man-
aging thread context in throughput processors,” in 2011 38th Annual
International Symposium on Computer Architecture (ISCA). IEEE,
2011, pp. 235–246.

[13] M. Gebhart, S. W. Keckler, and W. J. Dally, “A compile-time managed
multi-level register file hierarchy,” in Proceedings of the 44th annual
IEEE/ACM international symposium on microarchitecture, 2011, pp.
465–476.

[14] R. Goldman, K. Bartleson, T. Wood, K. Kranen, C. Cao, V. Melikyan,
and G. Markosyan, “Synopsys’ open educational design kit: capabilities,
deployment and future,” in 2009 IEEE International Conference on
Microelectronic Systems Education. IEEE, 2009, pp. 20–24.

[15] X. Gong, Z. Chen, A. K. Ziabari, R. Ubal, and D. Kaeli, “TwinKernels:
an execution model to improve GPU hardware scheduling at compile
time,” in 2017 IEEE/ACM International Symposium on Code Generation
and Optimization (CGO). IEEE, 2017, pp. 39–49.

[16] X. Gong, X. Gong, L. Yu, and D. Kaeli, “HAWS: Accelerating GPU
wavefront execution through selective out-of-order execution,” ACM
Transactions on Architecture and Code Optimization (TACO), vol. 16,
no. 2, pp. 1–22, 2019.

[17] GPGPU-Sim. (2015) Manual. [Online]. Available: http://gpgpu-sim.org/
manual/index.php/Main Page#PTXPlus support

[18] S. Gray. Assembler for NVIDIA Maxwell architecture.
https://github.com/NervanaSystems/maxas.

[19] R. Huerta, J.-M. Arnau, and A. Gonzalez, “Simple out of order core
for gpgpus,” in Proceedings of the 15th Workshop on General Purpose
Processing Using GPU, 2023, pp. 21–26.

[20] K. Iliakis, S. Xydis, and D. Soudris, “Repurposing GPU Microarchitec-
tures with Light-Weight Out-Of-Order Execution,” IEEE Transactions
on Parallel and Distributed Systems, vol. 33, no. 2, pp. 388–402, 2021.

[21] H. Jeon, “Resource underutilization exploitation for power efficient and
reliable throughput processor,” Ph.D. dissertation, University of Southern
California, 2015.

[22] Z. Jia, M. Maggioni, J. Smith, and D. P. Scarpazza, “Dissecting
the nvidia turing t4 gpu via microbenchmarking,” arXiv preprint
arXiv:1903.07486, 2019.

[23] A. Jog, O. Kayiran, N. Chidambaram Nachiappan, A. K. Mishra,
M. T. Kandemir, O. Mutlu, R. Iyer, and C. R. Das, “Owl:
Cooperative thread array aware scheduling techniques for improving
gpgpu performance,” in Proceedings of the Eighteenth International
Conference on Architectural Support for Programming Languages
and Operating Systems, ser. ASPLOS ’13. New York, NY, USA:
Association for Computing Machinery, 2013, p. 395–406. [Online].
Available: https://doi.org/10.1145/2451116.2451158

[24] A. Karki, C. P. Keshava, S. M. Shivakumar, J. Skow, G. M. Hegde, and
H. Jeon, “Tango: A deep neural network benchmark suite for various
accelerators,” in 2019 IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS). IEEE, 2019, pp. 137–138.

[25] O. Kayıran, A. Jog, M. T. Kandemir, and C. R. Das, “Neither more nor
less: Optimizing thread-level parallelism for GPGPUs,” in Proceedings
of the 22nd international conference on Parallel architectures and
compilation techniques. IEEE, 2013, pp. 157–166.

[26] M. Khairy, Z. Shen, T. M. Aamodt, and T. G. Rogers, “Accel-Sim:
An Extensible Simulation Framework for Validated GPU Modeling,” in
2020 ACM/IEEE 47th Annual International Symposium on Computer
Architecture (ISCA), 2020, pp. 473–486.

[27] F. Khorasani, H. A. Esfeden, A. Farmahini-Farahani, N. Jayasena,
and V. Sarkar, “Regmutex: Inter-warp gpu register time-sharing,” in
2018 ACM/IEEE 45th Annual International Symposium on Computer
Architecture (ISCA). IEEE, 2018, pp. 816–828.

[28] K. Kim, S. Lee, M. K. Yoon, G. Koo, W. W. Ro, and M. Annavaram,
“Warped-preexecution: A GPU pre-execution approach for improving
latency hiding,” in 2016 IEEE International Symposium on High Per-
formance Computer Architecture (HPCA). IEEE, 2016, pp. 163–175.

[29] D. B. Kirk and W. H. Wen-Mei, Programming massively parallel
processors: a hands-on approach. Morgan kaufmann, 2016.

[30] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” Advances in neural informa-
tion processing systems, vol. 25, 2012.

[31] J. Lee, Y. Ha, S. Lee, J. Woo, J. Lee, H. Jang, and Y. Kim, “GCoM:
a detailed GPU core model for accurate analytical modeling of modern
GPUs,” in Proceedings of the 49th Annual International Symposium on
Computer Architecture, 2022, pp. 424–436.

[32] M. Lee, S. Song, J. Moon, J. Kim, W. Seo, Y. Cho, and S. Ryu,
“Improving gpgpu resource utilization through alternative thread block
scheduling,” in 2014 IEEE 20th International Symposium on High
Performance Computer Architecture (HPCA). IEEE, 2014, pp. 260–
271.

[33] S.-Y. Lee and C.-J. Wu, “CAWS: Criticality-aware warp scheduling for
GPGPU workloads,” in Proceedings of the 23rd international conference
on Parallel architectures and compilation, 2014, pp. 175–186.

[34] D. Li, M. Rhu, D. R. Johnson, M. O’Connor, M. Erez, D. Burger,
D. S. Fussell, and S. W. Redder, “Priority-based cache allocation in
throughput processors,” in 2015 IEEE 21st International Symposium on
High Performance Computer Architecture (HPCA). IEEE, 2015, pp.
89–100.

[35] J. E. Lindholm, M. Y. Siu, S. S. Moy, S. Liu, and J. R. Nickolls,
“United States Patent #7,339,592: Simulating Multiported Memories
Using Lower Port Count Memories (Assignee NVIDIA Corp.),” Patent,
March, 2008.

[36] S. Lui, J. E. Lindholm, M. Y. Siu, B. W. Coon, and S. F. Oberman,
“United States Patent Application 11/555,649: Operand Collector Ar-
chitecture (Assignee NVIDIA Corp.),” Patent, May, 2008.

[37] D. Lustig, S. Sahasrabuddhe, and O. Giroux, “A formal analysis of
the nvidia ptx memory consistency model,” in Proceedings of the
Twenty-Fourth International Conference on Architectural Support for
Programming Languages and Operating Systems, 2019, pp. 257–270.

[38] A. Magni, C. Dubach, and M. O’Boyle, “Automatic optimization of
thread-coarsening for graphics processors,” in Proceedings of the 23rd
international conference on Parallel architectures and compilation,
2014, pp. 455–466.

15

http://gpgpu-sim.org/manual/index.php/Main_Page#PTXPlus_support
http://gpgpu-sim.org/manual/index.php/Main_Page#PTXPlus_support
https://doi.org/10.1145/2451116.2451158

[39] J. Menon, M. De Kruijf, and K. Sankaralingam, “igpu: exception
support and speculative execution on gpus,” ACM SIGARCH Computer
Architecture News, vol. 40, no. 3, pp. 72–83, 2012.

[40] V. Narasiman, M. Shebanow, C. J. Lee, R. Miftakhutdinov, O. Mutlu,
and Y. N. Patt, “Improving GPU performance via large warps and two-
level warp scheduling,” in Proceedings of the 44th Annual IEEE/ACM
International Symposium on Microarchitecture, 2011, pp. 308–317.

[41] J. Nickolls and W. J. Dally, “The GPU computing era,” IEEE micro,
vol. 30, no. 2, pp. 56–69, 2010.

[42] Nvidia. (2015) NVIDIA Multi-Process Service. [Online]. Available:
https://docs.nvidia.com/deploy/mps/index.html

[43] ——. (2017) Nvidia tesla v100 gpu architecture. [On-
line]. Available: https://images.nvidia.com/content/volta-architecture/
pdf/volta-architecture-whitepaper.pdf

[44] ——. (2018) Nvidia on demand paging. [Online].
Available: https://on-demand.gputechconf.com/gtc/2018/presentation/
s8430-everything-you-need-to-know-about-unified-memory.pdf

[45] ——. (2018) NVIDIA Turing GPU Architecture.
[Online]. Available: https://images.nvidia.com/aem-dam/en-zz/
Solutions/design-visualization/technologies/turing-architecture/
NVIDIA-Turing-Architecture-Whitepaper.pdf

[46] ——. (2019) Nvidia nvbit tool. [Online].
Available: https://research.nvidia.com/publication/2019-10
nvbit-dynamic-binary-instrumentation-framework-nvidia-gpus

[47] ——. (2021) CUDA DEBUGGING. [Online]. Available: https://leimao.
github.io/downloads/blog/2022-05-25-Proper-CUDA-Error-Checking/
cuda training series cuda debugging.pdf

[48] ——. (2022) Chipmaker Nvidia launches new system for autonomous
driving. [Online]. Available: https://www.reuters.com/technology/
chipmaker-nvidia-launches-new-system-autonomous-driving-2022-09-20/

[49] ——. (2022) Shader execution reordering - developer.nvidia.com.
[Online]. Available: https://developer.nvidia.com/sites/default/files/
akamai/gameworks/ser-whitepaper.pdf

[50] ——. (2023) CUDA C++ Programming Guide. [Online]. Available:
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

[51] ——. (2023) NVIDIA ada-tuning-guide. [Online]. Available: https:
//docs.nvidia.com/cuda/ada-tuning-guide/index.html

[52] J. J. K. Park, Y. Park, and S. Mahlke, “Chimera: Collaborative pre-
emption for multitasking on a shared gpu,” ACM SIGARCH Computer
Architecture News, vol. 43, no. 1, pp. 593–606, 2015.

[53] T. G. Rogers, M. O’Connor, and T. M. Aamodt, “Cache-conscious
wavefront scheduling,” in 2012 45th Annual IEEE/ACM International
Symposium on Microarchitecture. IEEE, 2012, pp. 72–83.

[54] A. Sethia, D. A. Jamshidi, and S. Mahlke, “Mascar: Speeding up
GPU warps by reducing memory pitstops,” in 2015 IEEE 21st Interna-
tional Symposium on High Performance Computer Architecture (HPCA).
IEEE, 2015, pp. 174–185.

[55] L. Shi, W. Liu, H. Zhang, Y. Xie, and D. Wang, “A survey of GPU-
based medical image computing techniques,” Quantitative imaging in
medicine and surgery, vol. 2, no. 3, p. 188, 2012.

[56] N. Stawinoga and T. Field, “Predictable thread coarsening,” ACM
Transactions on Architecture and Code Optimization (TACO), vol. 15,
no. 2, pp. 1–26, 2018.

[57] A. Stillmaker and B. Baas, “Scaling equations for the accurate prediction
of cmos device performance from 180 nm to 7 nm,” Integration, vol. 58,
pp. 74–81, 2017.

[58] I. Tanasic, I. Gelado, J. Cabezas, A. Ramirez, N. Navarro, and M. Valero,
“Enabling preemptive multiprogramming on gpus,” ACM SIGARCH
Computer Architecture News, vol. 42, no. 3, pp. 193–204, 2014.

[59] TechPowerUp. NVIDIA GeForce RTX 2060 SUPER. [Online]. Avail-
able: https://www.techpowerup.com/gpu-specs/geforce-rtx-2060-super.
c3441

[60] J. E. Thornton, “The cdc 6600 project,” Annals of the History of
Computing, vol. 2, no. 4, pp. 338–348, 1980.

[61] L. Wang, M. Huang, and T. El-Ghazawi, “Towards efficient gpu sharing
on multicore processors,” ACM SIGMETRICS Performance Evaluation
Review, vol. 40, no. 2, pp. 119–124, 2012.

[62] J. Wei, Y. Zhang, Z. Zhou, Z. Li, and M. A. Al Faruque, “Leaky DNN:
Stealing deep-learning model secret with gpu context-switching side-
channel,” in 2020 50th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN). IEEE, 2020, pp. 125–137.

[63] Q. Xu and M. Annavaram, “PATS: Pattern aware scheduling and power
gating for GPGPUs,” in Proceedings of the 23rd international conference
on Parallel architectures and compilation, 2014, pp. 225–236.

[64] T. T. Yeh, A. Sabne, P. Sakdhnagool, R. Eigenmann, and T. G.
Rogers, “Pagoda: A gpu runtime system for narrow tasks,” ACM
Trans. Parallel Comput., vol. 6, no. 4, nov 2019. [Online]. Available:
https://doi.org/10.1145/3365657

[65] M. K. Yoon, K. Kim, S. Lee, W. W. Ro, and M. Annavaram, “Virtual
thread: Maximizing thread-level parallelism beyond GPU scheduling
limit,” ACM SIGARCH Computer Architecture News, vol. 44, no. 3,
pp. 609–621, 2016.

[66] C. Yu, Y. Bai, and R. Wang, “Mipsgpu: Minimizing pipeline stalls for
gpus with non-blocking execution,” IEEE Transactions on Computers,
vol. 70, no. 11, pp. 1804–1816, 2020.

16

https://docs.nvidia.com/deploy/mps/index.html
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://on-demand.gputechconf.com/gtc/2018/presentation/s8430-everything-you-need-to-know-about-unified-memory.pdf
https://on-demand.gputechconf.com/gtc/2018/presentation/s8430-everything-you-need-to-know-about-unified-memory.pdf
https://images.nvidia.com/aem-dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://images.nvidia.com/aem-dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://images.nvidia.com/aem-dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://research.nvidia.com/publication/2019-10_nvbit-dynamic-binary-instrumentation-framework-nvidia-gpus
https://research.nvidia.com/publication/2019-10_nvbit-dynamic-binary-instrumentation-framework-nvidia-gpus
https://leimao.github.io/downloads/blog/2022-05-25-Proper-CUDA-Error-Checking/cuda_training_series_cuda_debugging.pdf
https://leimao.github.io/downloads/blog/2022-05-25-Proper-CUDA-Error-Checking/cuda_training_series_cuda_debugging.pdf
https://leimao.github.io/downloads/blog/2022-05-25-Proper-CUDA-Error-Checking/cuda_training_series_cuda_debugging.pdf
https://www.reuters.com/technology/chipmaker-nvidia-launches-new-system-autonomous-driving-2022-09-20/
https://www.reuters.com/technology/chipmaker-nvidia-launches-new-system-autonomous-driving-2022-09-20/
https://developer.nvidia.com/sites/default/files/akamai/gameworks/ser-whitepaper.pdf
https://developer.nvidia.com/sites/default/files/akamai/gameworks/ser-whitepaper.pdf
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/ada-tuning-guide/index.html
https://docs.nvidia.com/cuda/ada-tuning-guide/index.html
https://www.techpowerup.com/gpu-specs/geforce-rtx-2060-super.c3441
https://www.techpowerup.com/gpu-specs/geforce-rtx-2060-super.c3441
https://doi.org/10.1145/3365657

	Introduction
	Motivation
	Idealized OoO Performance on GPUs
	Existing GPU Out-of-Order Approaches

	Baseline Execution Model
	GhOST
	Dependence Checker
	Issue Buffer
	GhOST Scheduler
	Warp scheduler
	Software Optimizations for OoO Execution
	Exception Handling:
	GhOST in Action

	Evaluation Methodology
	Evaluation of GHOST
	GhOST and Application Occupancy
	GhOST with Various Warp Scheduling Policies
	Sensitivity of GhOST to Issue Buffer Size:
	GhOST-Precise
	Area and Power Efficiency
	Effect of Various OoO Optimizations on GhOST
	GhOST against LOOG

	Related Work
	Scheduling Policies
	Warp Throttling Techniques

	Conclusion
	Appendix
	Abstract
	Artifact check-list (meta-information)
	Description
	How to access
	Hardware dependencies
	Software dependencies

	Download and Installation
	Basic Test
	Experiment workflow
	Evaluation and expected results
	Experiment customization

	References

