
SHADOW: Simultaneous Multi-Threading Architecture with
Asymmetric Threads

Ishita Chaturvedi∗
Princeton University
Princeton, NJ, USA

Bhargav Reddy Godala
Ahead Computing
Portland, OR, USA

Abiram Gangavaram
Princeton University
Princeton, NJ, USA

Daniel Flyer
Princeton University
Princeton, NJ, USA

Tyler Sorensen
University of California,
Santa Cruz and Microsoft
Santa Cruz, CA, USA

Tor M. Aamodt
University of British

Columbia
Vancouver, BC, Canada

David I. August
Princeton University
Princeton, NJ, USA

Abstract
Many important applications exhibit shifting demands between
instruction-level parallelism (ILP) and thread-level parallelism (TLP)
due to irregular sparsity and unpredictable memory access pat-
terns. Conventional CPUs optimize for one but fail to balance both,
leading to underutilized execution resources and performance bot-
tlenecks. Addressing this challenge requires an architecture that
can seamlessly adapt to workload variations while maintaining
efficiency.

This paper presents SHADOW, the first asymmetric SMT core
that dynamically balances ILP and TLP by executing out-of-order
(OoO) and in-order (InO) threads simultaneously on the same core.
SHADOWmaximizes CPU utilization by leveraging deep ILP in the
OoO thread and high TLP in lightweight InO threads. It is runtime-
configurable, allowing applications to optimize the mix of OoO and
InO execution. Evaluated on nine diverse benchmarks, SHADOW
achieves up to 3.16× speedup and 1.33× average improvement over
an OoO CPU, with just 1% area and power overhead. By dynami-
cally adapting to workload characteristics, SHADOW outperforms
conventional architectures, efficiently accelerating memory-bound
workloads without compromising compute-bound performance.

Keywords
Asymmetric CPU microarchitecture, Simultaneous multithreading
(SMT), Heterogeneous thread execution, Dynamic ILP-TLP balanc-
ing, Software work stealing, Sparse workloads, Memory-bound
workload acceleration, Thread-level parallelism (TLP), Instruction-
level parallelism (ILP), Sparse matrix multiplication (SpMM), Low-
overhead microarchitectural design

1 Introduction
Memory-bound applications, such as deep learning workloads [25]
and high-performance computing kernels [42], often exhibit irregu-
lar memory access patterns and data sparsity. These characteristics
cause fluctuations between instruction-level parallelism (ILP) and
thread-level parallelism (TLP) during execution [33]. Traditional
CPUs are typically optimized for either ILP or TLP, with out-of-
order (OoO) cores focusing on ILP and lean in-order (InO) cores on
∗Also with Cerebras Systems (current address).

MICRO 2025, October 18–22, 2025, Seoul, Korea
2025. ACM ISBN 978-X-XXXX-XXXX-X/XX/XX
https://doi.org/XXXXXXX.XXXXXXX

70% Sparse 98% Sparse
0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 IP
C

/
W

or
k

D
is

tri
bu

tio
n IPC Work Distribution IPC Work Distribution

OoO:Tid0 InO:Tid1 InO:Tid2 InO:Tid3 InO:Tid4

Figure 1: SHADOW dynamically redistributes work as IPC
changes. High ILP skews execution toward the OoO thread,
while work distributes equally among threads when the ILP
is low. SHADOW adapts to the application without software
intervention.

TLP. This specialization can lead to underutilization of resources
and performance inefficiencies when handling applications with
dynamic parallelism requirements.

To address CPU inefficiencies, domain-specific accelerators have
been developed to improve memory-bound performance [20, 46, 47,
62, 65]. While these accelerators achieve high throughput, they of-
ten sacrifice programmability, making them unsuitable for general-
purpose workloads. GPUs provide greater flexibility but struggle
with irregular memory access patterns, limiting their efficiency
in sparse workloads [15]. Meanwhile, CPUs remain the most pro-
grammable option but struggle to adapt dynamically to shifting ILP
and TLP demands. While OoO CPUs effectively exploit ILP by re-
ordering instructions, their performance deteriorates in sparse and
memory-bound workloads, where ILP opportunities diminish. This
results in inefficiencies when handling high-latency workloads
such as sparse matrix-vector multiplication (SpMV) in iterative
solvers [51], graph traversal for social network analysis [37], data-
base query processing [48], stencil computations in high-performance
computing [17], and deep learning workloads with large embed-
dings for recommendation systems [22].

Evolving Beyond Traditional SMT. Simultaneous multithreading
(SMT) improves execution unit utilization by allowing multiple
threads to share resources. However, conventional SMT architec-
tures trade off between ILP and TLP, either supporting a few OoO
threads for ILP [39] or many in-order threads for TLP [26]. For
example, Intel’s SMT designs prioritize ILP by supporting only two
OoO threads per core. Prior work has explored adaptive SMT ex-
ecution. MorphCore [56] switches between a 2-thread deep OoO

1

https://doi.org/XXXXXXX.XXXXXXX

MICRO 2025, October 18–22, 2025, Seoul, Korea Chaturvedi et al.

mode and an 8-thread wide in-order mode but lacks simultaneous
ILP-TLP execution, leading to underutilization when workloads
do not fit neatly into one mode. FIFO Shelf [53] and FIFOrder [6]
speculatively routes instructions between OoO and in-order paths,
but at the cost of increased hardware complexity eg, cross-path
tracking, speculative wakeup, recovery.

This paper proposes a fundamentally different approach to bal-
ancing ILP and TLP: SHADOW executes OoO and InO threads
concurrently within a single core, dynamically redistributing work
without speculative instruction steering. Unlike prior approaches
that switch execution modes, SHADOW enables simultaneous deep
ILP and wide TLP execution, maximizing resource utilization.

Figure 1 illustrates how SHADOW dynamically adjusts work
distribution. At low sparsity, minimal cache misses allow OoO
threads to achieve high IPC, greedily taking more iterations via
software-driven work-stealing. As sparsity increases and L1 D-
cache misses rise, OoO efficiency drops. When memory stalls limit
OoO throughput, InO threads, free from speculative overhead, con-
tinue stealing work to sustain execution. This adaptation occurs
without explicit hardware coordination, threads independently steal
work as it becomes available, naturally distributing tasks based on
ILP and TLP demands. While SHADOW, like MorphCore, partitions
the physical register file among threads, a key distinction is that
MorphCore operates in either OoO or InO mode at a given time,
whereas SHADOW enables the simultaneous execution of both (See
Section 3.3). This co-execution allows SHADOW to dynamically
balance ILP and TLP within a single core, adapting more effectively
to workload demands.

A key advantage of this hybrid approach is its efficiency in terms
of area and power. Adding additional in-order threads to an ex-
isting core increases area by only 1%, whereas adding a separate
core would incur a significant increase in area overhead. Further-
more, the base core itself is often underutilized, making it more
cost-effective to fully utilize existing resources before introducing
additional cores. By enabling in-order and out-of-order execution
within a single core, SHADOW maximizes utilization while mini-
mizing power and area costs, offering an efficient, general-purpose
solution for memory-bound workloads without the complexity of
speculative instruction steering.

Contributions of This Work.
• A comprehensive study of ILP-TLP tradeoffs inmodern CPUs,
demonstrating the inefficiencies of traditional SMT architec-
tures and highlighting the need for asymmetric multithread-
ing (Section 2).
• Through SHADOW, we demonstrate that an asymmetric
SMT core can efficiently balance ILP and TLP by enabling
simultaneous execution of in-order and out-of-order threads,
maximizing performance with minimal area and power over-
head (Section 3).
• An extensive evaluation of SHADOW across diverse work-
loads, spanning compute-bound and memory-intensive ap-
plications, demonstrates its adaptability to varying cache
pressures, with a detailed study on Sparse Matrix Multipli-
cation (SpMM) (Section 5).

50% 60% 70% 80% 90% 98%
Sparsity Level

0

1

2

IP
C

IPC
L2 Miss Rate (%)

0

25

50

L2
 C

ac
he

 M
is

s R
at

e
(%

)

Figure 2: Change in the IPC and L2 cachemisses of the SpMM
application with varying sparsity.

128 256 512
ROB / Reservation Station Size

1.00

1.05

Sp
ee

du
p ROB scaling

LSQ scaling

LQ:72/SQ:68 LQ:144/SQ:136 LQ:216/SQ:204
LSQ Size

Figure 3: Speedup of 95%-sparse SpMM on a single OoO
thread, showing diminishing returns from enlarging the
ROB/RS or LSQ sizes.

2 Background and Motivation
Modern CPUs struggle to balance ILP and TLP, leading to under-
utilization. OoO execution extracts ILP but stalls on cache misses
in memory-bound workloads, while InO execution exploits TLP
but cannot hide long-latency memory operations. This section ex-
amines SMT’s limitations in adapting to shifting ILP/TLP demands
and introduces SHADOW, an asymmetric SMT architecture that
integrates OoO and InO threads within a single core, dynamically
redistributing execution resources without speculative overhead.

2.1 CPU Underutilization in Memory-Bound
Workloads

Memory-bound applications fluctuate between ILP- and TLP-friendly
phases, leading to CPU underutilization when execution resources
sit idle due to limited ILP or TLP extraction.

Challenges in Out-of-Order Execution. OoO processors mitigate
memory stalls using a large instruction window via the reorder
buffer (ROB) and reservation stations (RS). However, these resources
deplete quickly inmemory-boundworkloads. Figure 2 shows that in
SpMM, increasing sparsity leads to rising L2 cache misses, severely
degrading IPC as instruction windows remain underutilized.

Expanding the ROB and RS increases the instruction window, po-
tentially improving performance in memory-bound workloads [40].
Figure 3 isolates this effect by (a) scaling only the ROB and RS and
(b) scaling only load and store queue (LSQ) entries, while keeping
all other microarchitectural structures constant, using a gem5 sim-
ulator configured as described in Table 1. A larger ROB yields a
modest 7% IPC gain but significantly increases wakeup-select CAM
complexity, leading to high area and power overhead. The dimin-
ishing returns suggest that ROB scaling alone is insufficient for
mitigating stalls in memory-bound scenarios. Similarly, increasing
LSQ capacity has minimal impact: once the ROB is saturated by
in-flight loads and their dependences, new instructions stall before

2

SHADOW: Simultaneous Multi-Threading Architecture with Asymmetric Threads MICRO 2025, October 18–22, 2025, Seoul, Korea

1-
OO

O
1-

Oo
O+

1-
In

O
1-

Oo
O+

2-
In

O
1-

Oo
O+

3-
In

O
1-

Oo
O+

4-
In

O
2-

Oo
O

2-
Oo

O+
1-

In
O

2-
Oo

O+
2-

In
O

3-
Oo

O

6-
In

O

Thread Configuration

0.0

0.5

1.0

1.5

IP
C

Tid:0 Tid:1 Tid:2 Tid:3 Tid:4 Tid:5

Figure 4: Breakdown of IPC contributions from all threads
for 95% sparse SpMM.

the LSQ fills, keeping LSQ structural hazards off the critical path.
While increasing the instruction window improves performance
in ILP-heavy workloads, it does not effectively leverage the TLP
present in memory-bound workloads like SpMM. To fully exploit
available parallelism, CPUs must also incorporate mechanisms to
distribute work across multiple threads.

Challenges in Thread-Level Parallelism. Memory-bound work-
loads like SpMM exhibit inherent TLP, as matrix rows can be pro-
cessed independently. However, traditional SMT struggles with
resource allocation, causing contention among threads. Figure 4
isolates the impact of increasing thread count while keeping the
ROB, LSQ, and physical registers fixed, modeled using the gem5 sim-
ulator (detailed later in Table 1) on 95% sparse SpMM. The results
show that adding OoO threads initially improves IPC, but gains
diminish beyond two threads due to ROB saturation and register
file pressure.

The results indicate that while adding more OoO threads ini-
tially boosts IPC, the benefits diminish beyond two OoO threads
due to ROB saturation and increased register file pressure. In con-
trast, the 1 OoO + 4 InO configuration achieves higher IPC than
a 3 OoO setup by leveraging in-order threads, which rely solely
on the architectural register file (ARF) without adding speculative
execution overhead. However, a fully in-order configuration with 6
InO threads struggles in workloads requiring high ILP, highlight-
ing the importance of SHADOW’s hybrid execution model, which
dynamically balances ILP and TLP to optimize performance.

2.2 Limitations of Traditional SMT
Architectures

Existing SMT implementations do not dynamically adjust ILP/TLP
execution balance, leading to suboptimal utilization. Two major
prior SMT approaches have attempted to address this issue:

MorphCore [56]: Mode-Switching SMT. MorphCore allows a CPU
core to switch between two execution modes based on the number
of threads used by the application: (1) A deep OoO mode (up to
2-wide SMT) optimized for ILP. (2) A wide InO mode (up to 8-wide
SMT) optimized for TLP. However, this approach does not allow
ILP and TLP execution to coexist, leading to underutilization when
workloads do not fit neatly into one execution mode.

FIFO Shelf [53] and FIFOrder [6]: Speculative SMT. FIFO Shelf and
FIFOrder show that decode-stage logic can steer instructions within

a single thread between an OoO engine and an in-order FIFO path,
enabling fine-grained ILP/TLP adaptation at modest hardware cost.
However, this requires mechanisms for correctness—cross-path
dependency tracking, speculative wakeup, and misprediction recov-
ery. SHADOW instead partitions at thread granularity, assigning
each software thread wholly to either an OoO or an InO lane.

2.3 Why a Hybrid SMT Core is Needed Over
Separate OoO and InO Cores

An alternative to asymmetric SMT is using separate InO and OoO
cores instead of merging them into a single hybrid core. However,
this approach is inefficient due to the following reasons:

(1) Area Efficiency: As we will show, when done judiciously,
adding extra in-order threads to an existing core increases area
by only 1%, whereas adding a separate core incurs a significant
area overhead. (2) Power Efficiency: Hybrid SMT allows better
resource sharing within a single core, reducing redundant hardware
replication. (3) Execution Resource Utilization: The base core is
often underutilized, so SHADOWmaximizes its available resources
instead of relying on additional cores. By integrating OoO threads
and multiple InO threads within the same core, SHADOW achieves
higher utilization at minimal cost.

2.4 SHADOW: A Balanced ILP-TLP Execution
Model

The limitations of prior SMT approaches highlight the need for a
hybrid execution model that can simultaneously exploit ILP while
efficiently scaling TLP. SHADOW achieves this through:
• OoO threads to extract ILP where possible.
• Multiple lightweight InO threads to exploit TLP without
incurring OoO execution overhead.
• A simple, software-based work-stealing mechanism to dy-
namically redistribute work based on execution demand.

By concurrently leveraging ILP and TLP, SHADOW achieves
higher efficiency than existing SMT designs, making it a scalable
solution for modern memory-bound workloads.

3 SHADOW
SHADOW is the first asymmetric simultaneous multithread-
ing (SMT) architecture to integrate OoO and InO threads within
a single core, dynamically balancing ILP and TLP without specula-
tive instruction steering or execution mode switching. InO threads
execute strictly sequentially without speculation or register renam-
ing, allowing SHADOW to efficiently adapt to workload demands,
particularly in memory-bound applications.

Figure 5 illustrates SHADOW’s microarchitecture. Each cycle, a
thread fetches 1 and decodes instructions 2 . OoO instructions are
renamed 3 and placed in the RS 4 , while InO instructions bypass
renaming and enter a FIFO queue. The oldest InO instructions are
inserted into the RS. Ready instructions execute 5 , write back 6 ,
and commit 7 , though only OoO threads commit, as InO threads
execute non-speculatively.

SHADOW is runtime-configurable, with configurations
limited by total physical register count. InO threads use integer
and floating-point registers, maximizing TLP without renaming or

3

MICRO 2025, October 18–22, 2025, Seoul, Korea Chaturvedi et al.

ICache Fetch Decode
OoO RS

In Order RS
TID1

In Order RS
TID2

In Order RS
TID3

Execute WB Commit

OoOIn-OrderShared

BP

PC0

PC1

PC2

PC3

Issue

SELECT
(ICOUNT)

Rename

ROB

LD
Queue

Store Queue

FIFO TID:1

FIFO TID:2

FIFO TID:3

Register File

PC4

FIFO TID:4
In Order RS

TID4

1

2

3
4

5 6 7

Figure 5: Microarchitecture design of SHADOW configured with 1 OoO and 4 inO threads.

PC0

PC1

PC2

PC3

OoOIn-OrderShared

SELECT
(ICOUNT)

ICache

TID0

TID1

TID2

TID3

Fetch
Queue

SELECT
(Fetch Queue
Utilization)

PC4 TID4

Decoder

TID0

TID1

TID2

TID3

TID4

Decoded
Queue

To Rename
(OoO)/FIFO

Queues
(InO)

SELECT
(ICOUNT)

TID0

TID1

TID2

TID3

TID4

Decode
Queue

SELECT
(ICOUNT)

Figure 6: Microarchitecture of the fetch and decode stage configured with 1 OoO and 4 inO threads.

speculation, while OoO threads access all registers, including vector
registers. Registers are split between the ARF and the physical regis-
ter file (PRF). InO threads execute non-speculatively, each receiving
a number of registers equal to the ARF. The remaining registers are
shared among OoO threads, with architectural state tracking simi-
lar to the ARM Cortex-A9 [7], which uses a Register Alias Table to
manage the subset of physical registers holding architectural state.
With a 256 integer register and 192 floating point register setup
modeling the Grace ARM CPU core, SHADOW enables multiple
configurations, including 1–3 OoO threads, up to 6 InO threads,
and hybrid setups such as 1 OoO + 4 InO and 2 OoO + 2 InO.

SHADOW balances ILP and TLP through a software-based dy-
namic work-stealing mechanism that emerges from a greedy
scheduling strategy on asymmetric hardware threads. Each thread
independently steals work as soon as it becomes available, without
centralized control. OoO threads, benefiting from a deep execution
window, greedily take more iterations when ILP is high. When
memory-bound stalls limit OoO throughput, InO threads, unaf-
fected by speculative bottlenecks, continue stealing work to sustain
execution. This adaptive redistribution occurs without explicit
intervention or complex scheduling logic; instead, the software

work-stealing mechanism allows threads to claim available work
in a decentralized manner, ensuring efficient workload balancing
as an emergent property of execution.

The specific modifications SHADOW introduces at each pipeline
stage are described below:

3.1 Fetch and Decode
The fetch 1 and decode 2 stages in SHADOW operate similarly
to SMT-enabled cores (Figure 6). The architecture supports up to
six SMT contexts, each with its own program counter (PC). Return
Address Stacks (RAS) are exclusive to OoO threads for speculative
execution, while InO threads execute without speculation, eliminat-
ing rollback mechanisms. Since InO threads do not predict branches,
they stall fetch until branch resolution, but SHADOW offsets this
with higher TLP from multiple InO threads.

Each cycle, a single thread accesses the instruction cache (ICache),
selected via the ICOUNT policy [59]. Decode prioritizes threads
with the most instructions in the fetch queue, ensuring a steady
supply. Rename and issue selection follow ICOUNT, favoring OoO
threads when occupancy is equal to maximize ILP and prevent

4

SHADOW: Simultaneous Multi-Threading Architecture with Asymmetric Threads MICRO 2025, October 18–22, 2025, Seoul, Korea

OoOIn-OrderShared

Decoded
Instruction

Rename
Instruction

ROB

LDQ

STQ

 OoO
Reservation

Station

FIFO Inst Queue TID:1

FIFO Inst Queue TID:2

FIFO Inst Queue TID:3

In-Order RS: Tid 1

In-Order RS: Tid 2

In-Order RS: Tid 3

Dependence
Checking

WB Reg
Broadcast

To
Execute

Rename Select+Wakeup

Register File

Reservation Stations

Reservation Station

Src1
Reg READY D Src2

Reg READY ScheduledDest
Tag

Partitioned Physical
Register File

Partition for Tid:0

Partition for Tid:2

Partition for Tid:3

Partition for Tid:4

Req

Ready
for Issue

Reset

MS D MSFIFO Inst Queue TID:4 In-Order RS: Tid 4

Partition for Tid:1

SELECT
(Cycles since decode)

Figure 7: Microarchitecture of the Rename and Wakeup+Select stages configured with SHADOW having 1 OoO and 4 inO
threads.

........

Configuration: 2OoO+1InOFree List bit-vector

Reg 215-256Reg 107-214Reg 1-106
Tid0
(OoO):
PRF start

Tid0
(OoO):

PRF end
Speculative RAT

Tid:0
Tid:1

Permanent RAT
Tid:0
Tid:1

Updated on Rename Updated on Commit

Tid1
(OoO):
PRF start

Tid1
(OoO):

PRF end

Tid2
(InO):
PRF start

Tid2
(InO):

PRF end

Figure 8: Register File partitioning in SHADOW.

starvation. This scheduling strategy dynamically balances resource
allocation for efficient backend utilization.

3.2 Rename
Instruction Placement in the ROB. Figure 7 details SHADOW’s

rename 3 , select, and wakeup 4 stages. After decoding, OoO in-
structions are renamed to eliminate false dependencies, checked
for remaining dependencies, and placed in the ROB and RS, stati-
cally partitioned when multiple OoO threads are active to prevent
contention. InO instructions bypass renaming, entering per-thread
circular FIFO queues that power downwhen inactive to save energy.

Instruction Placement in the RS. After renaming (for OoO threads)
or static PRF mapping (for InO threads), instructions enter the RS.
At runtime, the RS is partitioned between OoO and InO threads,
with each InO thread allocated one entry, while the rest are evenly
split among OoO threads. The oldest InO instructions check depen-
dencies via a per-thread scoreboard, a multi-ported 448-bit table

supporting two reads and two writes per thread per cycle. Depen-
dencies are tracked on source registers, and if present, the RS entry
waits until sources are ready.

3.3 Context Switching and Register File
Allocation

SHADOW uses a software “delegate thread” to apply asymmetric-
SMT settings transparently at pthread spawn or context switch [4].
The delegate issues the new shdw_cfg <#OoO>,<#InO> instruc-
tion, which (1) Resets the Front End, activating <#OoO> OoO and
<#InO> InO PCs; (2)Reconfigures RenameTables, assigning OoO
threads to the first <#OoO> hardware threads and InO threads to the
remaining ones, with each OoO thread maintaining an independent
free list of physical registers (PRs); and (3) Partitions Execution
Resources, configuring the ROB and RS based on Section 3.2.

The OS stores an application’s thread configuration alongside its
process state in the process control block (PCB). To avoid complex
resource partitioning across concurrent workloads, SHADOW cur-
rently supports either (a) several single-threaded applications or (b)
onemulti-threaded application. Supportingmultiple multi-threaded
applications would force the OS to divide shared structures (register
file entries, LSQ entries, etc.) among different asymmetric config-
urations, complicating scheduling and context-switch logic. We
leave full multi-program, multi-threaded support for future work.

Register file allocation. Similar to GPUs, which assign registers
per thread to manage warp distribution [14], SHADOW dynami-
cally allocates registers at context switches based on the applica-
tion’s configuration. As shown in Figure 8, Register allocation uses a
bit-vector free list with a priority decoder, as in BOOM [10]. (1) Each
𝐼 InO thread is allocated𝐴 architectural registers, totaling𝐴·𝐼 across
all active InO threads. (2) The remaining registers are divided among
𝑂 OoO threads, with each receiving (𝑃 −𝐴 · 𝐼)/𝑂 registers. The free

5

MICRO 2025, October 18–22, 2025, Seoul, Korea Chaturvedi et al.

Head Pointer

A B C ED F

Stalled

G
Issued
OoO

OoO ROB

Head Pointer

In-Order
Circular FIFO

ROB full: Cannot accept new insturctions

Long latency load instructions

Tail Poiner In-flight Load instructions

4

6

Only 1
OoO

1 OoO+1
In-order

A. R1 Load [R10]
B. R2 Load [R11]
C. R4 R11+ R10
D. R5 R13 + R14
E. R6 R1+ R13
F. R7 R1+R6
G. R8 Load [R14]
H. R9 Load [R13]

H

A B C ED F G H

Tail Poiner

Issued In-
Order

Init: R10,R11,R13,R14

(a)

(b)

Figure 9: Impact of Adding an In-Order Thread to an OoO System: An Illustrative Assembly Example.

list for each OoO thread is determined using bitwise AND on the
available bit vector for the range [(𝑃−𝐴·𝐼)/𝑂, (𝑖+1) (𝑃−𝐴·𝐼)/𝑂−1].

OoO threads use a Pentium 4-style renaming approach [27], sim-
ilar to MorphCore [56], storing both speculative and architectural
data in the PRF. Each OoO thread maintains a per-thread Register
Alias Table (RAT) with a Speculative-RAT for speculative execution
and a Permanent-RAT for architectural state tracking. This design is
preferred over rename checkpoints, as deeper and wider instruction
windows (320 entries in this configuration) require more check-
points—up to 48 for a 256-entry ROB—incurring high RAT restore
latency and increased power and performance costs [45]. During
context switches, the OS saves the register state and hardware
configuration in the PCB, including the stack pointer and Current
Program Status Register (CPSR) for each thread before executing
the shdw_cfg operation.

3.4 Select and Wakeup
The wakeup logic 4 remains unchanged and operates exactly as
in a traditional out-of-order core. Figure 7 shows the structure of
the RS entry [55, 56].

OoO Wakeup. SHADOW’s out-of-order wakeup process follows
traditional OoO cores. An operand is marked ready (R bit set) once
its dependencies are resolved. For OoO threads, this also occurs
when the MATCH bit remains active for the number of cycles speci-
fied in the DELAY field. During execution, an instruction broadcasts
its destination tag, which is compared against source tags in the RS.
A match sets the MATCH bit and updates the DELAY field with the
instruction’s execution latency, stored in its RS entry. The DELAY
value transfers to the SHIFT field associated with the source tag,
decrementing each cycle while the MATCH bit stays active. Once
the SHIFT field reaches zero, the R bit is set, marking the operand
as ready. The RS entry then raises a request for execution once all
operands are available.

OoO Select. The select logic scans the RS for the oldest instruc-
tions with Req Exec set, generating a Grant bit vector to mark
entries for execution. The selected instruction sets its SCHEDULED
bit, preventing further competition in later cycles.

In-Order Wakeup. In-order instructions issue sequentially, re-
specting all dependencies. Each in-order thread has a single RS
entry, reducing hardware complexity. If no dependencies exist, the
instruction asserts Req to signal readiness; otherwise, it waits until
dependencies resolve. When a dependent instruction completes,
its destination register is checked against waiting instructions’
sources—if matched, the ready bit is set. Execution proceeds once
both sources are ready.

This wakeup mechanism is designed for efficiency, eliminating
the need for costly broadcasts and tag comparisons across the RS.
To maintain correctness, in-order execution stalls and the load
instruction entry is not removed from the RS until it has a hit in
the translation lookaside buffer (TLB). This precaution prevents an
incorrect register state due to potential load re-execution caused
by TLB misses.

In-Order Select. With only one RS entry per in-order thread, no
additional selection logic is required.

Selecting Ready Instructions for Issue. From the ready instructions
in the RS, instructions are selected for issue based on the cycles the
instructions have spent in the pipeline since decode, and sent to
the issue queues.

3.5 Execute, Writeback, and Commit
SHADOW’s execute 5 , writeback 6 , and commit 7 stages operate
like a traditional OoO core. Both OoO and InO threads read from
the PRF, execute in the ALU, and use writeback bypass. However,
only OoO threads commit, as InO threads execute sequentially
without speculation. OoO instructions commit in order, updating
the Permanent-RAT.

3.6 Branch Prediction
Only OoO threads perform branch prediction in SHADOW. Ex-
periments show that ILP from the OoO thread and TLP from InO
threads effectively mask branch resolution latencies, making branch
prediction for InO threads unnecessary. Thus, SHADOW, like the
Sun Niagara T1 [34], eliminates branch prediction for InO threads.
Mispredictions in the OoO thread affect only its own instructions,
leaving InO threads unaffected.

6

SHADOW: Simultaneous Multi-Threading Architecture with Asymmetric Threads MICRO 2025, October 18–22, 2025, Seoul, Korea

3.7 Load and Store Queues
SHADOW configures load and store queues at runtime. Each OoO
thread has a dedicated partition and can execute loads speculatively.
Loads update the load queue, check the store queue for forwarding,
and enable speculative execution. The store queue detects violations
by tracking speculative loads against pending stores.

In contrast, InO threads do not use the load queue, execute con-
servatively, and each receives five store queue entries. Loads check
only the store queue for correctness, avoiding speculation. To pre-
vent incorrect execution, InO threads stall until the issues load
registers a TLB hit to avoid incorrect execution if a load needs to
be replayed. The TLB is shared among threads.

3.8 Memory Consistency and Coherence
SHADOW targets data-parallel applications that use locks, provid-
ing a sequential consistency for data-race-free (SC for DRF)
model [1]. Lock acquisitions and releases flush relevant pipelines,
preventing unintended reordering across lock boundaries. With a
shared L1 cache, coherence is maintainedwithout explicit intra-core
messaging. While SHADOW currently supports coarse-grained
synchronization with SC for DRF, its design can naturally extend
to finer-grained memory consistency using ARM-style memory
ordering if needed.

3.9 Dynamic Work Distribution and Stealing
Mechanism

SHADOW employs a software-based work-stealing mechanism to
dynamically distribute workloads between OoO and InO threads.
Algorithm 1 demonstrates its implementation using Pthreads. The
user specifies CHUNK_SIZE to control the granularity of work stolen
by each thread (line 2). Worker threads are then spawned (line
3), each executing in a continuous loop (line 4) until all work is
completed. A thread acquires the lock (line 6) to safely access and
update the global currentChunk counter, which tracks the next
available workload index. It records its assigned starting index
(line 7), updates currentChunk so other threads are aware of the
remaining work (line 8), and then releases the lock (line 9). If the
assigned index exceeds the total workload, the thread terminates
(line 11) and waits for others to complete (line 18). Otherwise,
it determines the range of iterations it will process (line 13) and
executes its assigned work (line 15). The thread then loops back to
steal more work (line 5) until no work remains.

The OS scheduler treats each pthread as a normal kernel thread
and is unaware of SHADOW’s internal OoO/InO asymmetry; it
only intervenes on context switches. Fine-grained load balancing
happens entirely in user space via work-stealing locks within each
pthread, handling uneven progress without OS support. SHADOW
also integrateswith high-level runtimes (e.g., Intel TBB [50], Cilk [9],
OpenMP) that already provide similar work-stealing abstractions.

This evaluation assumes uniformly distributed workloads, where
each chunk has the same amount of work. Work stealing adapts to
ILP-TLP characteristics: when cache misses are low, OoO threads
achieve higher IPC and process more iterations, while at high miss
rates, InO threads take on a larger workload, improving resource
utilization. Contention on the lock used for work-stealing can arise
when multiple threads steal work simultaneously, particularly with

small CHUNK_SIZE or whenmany threads finish their assigned work
around the same time. In our evaluation, OoO threads stall when no
work remains, though implementations could allow them to reclaim
unfinished iterations from InO threads for improved efficiency.

Work stealing can affect cache performance, particularly in work-
loads with high L1 D-cache hit rates, due to increased data move-
ment across threads (Section 5.1). While SHADOW is designed for
a single core, its principles extend to multi-core architectures. For
example, an ARM big core in a big.LITTLE configuration could be
adapted into a SHADOW core, and dynamic work stealing between
big and little cores can be used to maximize resource utilization.
Mapping OoO and InO threads across multiple SHADOW-enabled
cores—e.g., allocating two OoO and four InO threads among many
cores—requires complex load balancing under shared-resource con-
straints and is left for future work.

3.10 Impact on CPU Frequency
SHADOW is expected to have a similar impact on CPU core fre-
quency asMorphCore [56], which estimates a 2.5% slowdown due to
added multiplexers in critical pipeline stages. SHADOW introduces
comparable multiplexers to support the selection between OoO and
InO instructions in the rename stage, RS scheduling, and operand
bypass logic. Additionally, SHADOW integrates per-thread fetch
queues and in-order wakeup/select logic, similar to MorphCore.
Like MorphCore, SHADOW ensures that newly added in-order
scheduling logic is placed and routed to avoid extending the critical
path beyond these minor multiplexer delays.

When configured with only InO threads, SHADOW does not
boost core frequency as InO threads share execution resources with
OoO threads, thus changing frequency would require decoupling
their pipeline, adding complexity and undermining SHADOW’s
simplicity. Even with a frequency boost, 6 InO threads would un-
derperform a single OoO thread. Using IBM POWER6 [36] (5 GHz,
InO) and POWER7 [21] (4.25 GHz, OoO) as reference points, experi-
ments show that 6 InO threads are 1.08× slower in high L1 D-cache
miss workloads and 1.78× slower in ILP-heavy workloads.

3.11 Security Considerations
Sharing core resources among multiple threads can introduce side-
and covert-channel vulnerabilities, as demonstrated by extensive
prior work on SMT security. Approaches such as SecSMT [57],
defense mechanisms against transient-execution attacks on SMT
cores [31], and SMT-COP’s execution-unit arbitration [58] show
how resource partitioning, arbitration, and flush policies can miti-
gate contention-based leaks. While SHADOW’s InO lanes eliminate
speculation and rename-table sharing—reducing several common
leakage vectors, comprehensive protection (e.g., against subtle mi-
croarchitectural or transient attacks) requires integrating dedicated
defenses, which is beyond this paper’s scope. We leave the explo-
ration of tailored hardware/software co-designs (e.g., fine-grained
port throttling, cache partitioning, speculative masking) for future
work.

7

MICRO 2025, October 18–22, 2025, Seoul, Korea Chaturvedi et al.

3.12 Example of SHADOW’s Impact on TLP and
ILP Performance

In OoO execution, long-latency loads with high L2 miss rates stall
execution by occupying the ROB for hundreds of cycles, preventing
new instructions from entering. Completed instructions cannot
retire due to in-order commit, further filling the ROB. Figure 9 uses
a small instruction sequence (A–H) to contrast this bottleneck with
SHADOW’s asymmetric OoO+InO setup, which alleviates ROB
pressure.

In Figure 9(a), each OoO instruction allocates a ROB entry, with
arrows indicating data dependencies for wake-up, while head and
tail pointers track the oldest retire slot and the next allocation
position respectively.Long-latency loads retain their ROB entries
until they retire; even if younger instructions finish early, their slots
remain occupied until all previous entries retire, filling the ROB
and blocking new issue due to no free entries.

Figure 9(b) illustrates a SHADOW asymmetric configuration
with 1-OoO+1-InO thread: the OoO thread allocates ROB entries
with dependency pointers, while the InO thread issues from a light-
weight FIFO that bypasses the ROB, allowing the InO thread to
utilize execution units alongside the OoO thread without consum-
ing ROB slots. Omitting register renaming and speculation keeps
hardware overhead minimal while increasing in-flight memory
operations (e.g., from 4 to 6), thereby boosting memory-level paral-
lelism and throughput compared to a lone OoO thread.

Algorithm 1: Dynamic Work Stealing Mechanism in
SHADOW
1 Initialize global counter index 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐶ℎ𝑢𝑛𝑘 ← 0 and

mutex;
2 Define CHUNK_SIZE as the amount of work each thread

steals at a time;
3 Spawn 𝑁 worker threads;
4 foreach worker thread 𝑡 in parallel do
5 while true do
6 Lock mutex;
7 Set 𝑠𝑡𝑎𝑟𝑡𝐶ℎ𝑢𝑛𝑘 ← 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐶ℎ𝑢𝑛𝑘 ;
8 Update

𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐶ℎ𝑢𝑛𝑘 ← 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐶ℎ𝑢𝑛𝑘+CHUNK_SIZE;
9 Unlock mutex;

10 if 𝑠𝑡𝑎𝑟𝑡𝐶ℎ𝑢𝑛𝑘 ≥ 𝑇𝑜𝑡𝑎𝑙𝑊𝑜𝑟𝑘 then
11 break;
12 end
13 Set 𝑒𝑛𝑑𝐶ℎ𝑢𝑛𝑘 ←

min(𝑠𝑡𝑎𝑟𝑡𝐶ℎ𝑢𝑛𝑘 + CHUNK_SIZE,𝑇𝑜𝑡𝑎𝑙𝑊𝑜𝑟𝑘);
14 foreach iteration 𝑖 in [𝑠𝑡𝑎𝑟𝑡𝐶ℎ𝑢𝑛𝑘, 𝑒𝑛𝑑𝐶ℎ𝑢𝑛𝑘) do
15 Execute assigned work;
16 end
17 end
18 end
19 Synchronize and join worker threads;
20 Return completed workload;

Table 1: CPU Microarchitectural Parameters

Parameter Value
ISA ARM
Simulator Gem5
Reorder Buffer (ROB) Size and Reservation
Station size [13, 16]

320

Circular FIFO Queue Size 20
OoO Thread Store Queue Size 68
OoO Thread Load Queue Size 72
In-Order Thread Store Queue Size 5
Integer Registers (ARF+PRF) 258
Floating Point Registers (ARF+PRF) 192
Vector Registers (ARF+PRF) 192
FUs 6 Int ALUs, 2 Int MUL/DIV, 4

FP/Vector, 2 Load/Store, 1 Load-
only, 2 Store-only

L1 Data Cache 64 kB, 2-way set associative, 2 cy-
cles pipelined, 24 MSHRs

L1 Instruction Cache 64 kB, 2-way set associative, 2 cy-
cles pipelined, 12 MSHRs

L2 Cache 1MB, 16-way set associative, 16 cy-
cles pipelined, 24 MSHRs, Strided
Prefetcher

DRAM DDR4-2400 (16x4), 32 GB/channel,
0.833 ns cycle (1.2 GHz), 17.5 ns
row hit, 45.8 ns row miss

Issue Width 8 / 4
Commit Width 8 / 4

Table 2: Benchmarks used to evaluate SHADOW

Benchmark L1-DCache
Miss Rate

L2 Cache
Miss Rate

Added lines of
code

Sparse Matrix Multiplication High (>25%) Varies -
APSP [5] 24% 1% 0
Backprop [12] 45% 84% 8
Heartwall [12] 71% 39% 8
Tiled Dense Matrix Multiplication 5% 1% -
BC [12] 1.6% 15% 0
TSP [5] 1% 98% 12
nn [5] 2% 96% 10
Pathfinder [5] 1% 37% 10

4 Evaluation Methodology
This section describes the experimental context used to evaluate
SHADOW.

Modeling SHADOW. SHADOW is implemented in Gem5 [8, 41]
using system emulation mode, modeling a high-performance ARM
Grace core (Table 1), with several modifications to support its asym-
metric multithreading model. SMT support was extended to enable
heterogeneous execution within a single core, integrating OoO and
InO threads. The rename stage was modified to let InO threads
bypass register renaming while extending dependency tracking for
false dependencies. Dispatch logic enforces strict in-order execu-
tion for InO threads, prevents speculation, and prioritizes the oldest
ready instruction across all threads. The commit stage was modified
so that only OoO threads commit instructions, while InO threads ex-
ecute strictly non-speculatively, eliminating rollback mechanisms.
These changes ensure an accurate SHADOW model in Gem5.

8

SHADOW: Simultaneous Multi-Threading Architecture with Asymmetric Threads MICRO 2025, October 18–22, 2025, Seoul, Korea

Evaluating SHADOW. SHADOW is evaluated on SpMM (Gus-
tavson’s algorithm), tiled dense matrix multiplication, and selected
CRONO [5] and Rodinia [12] benchmarks, summarized in Table 2.
Benchmarks are classified by L1 D-cache miss rates as high (≥ 25%)
or low (< 25%). The table also quantifies code modifications re-
quired to integrate dynamic work stealing in Pthreads-based imple-
mentations, highlighting adaptation effort.

SpMM serves as the primary workload, with varying sparsity
levels showcasing SHADOW’s ILP-TLP balancing under differ-
ent memory access patterns affecting OoO IPC. Additional bench-
marks cover compute-bound (e.g., BC, NN, Pathfinder) andmemory-
intensive (e.g., APSP, Backprop, Heartwall) workloads for broad
evaluation. Benchmarks were selected for Pthreads compatibility,
with a subset used due to software-based dynamic work stealing
requiring well-defined workload distribution. No benchmarks were
excluded based on performance.

SHADOW is evaluated against MorphCore and FIFOShelf. Mor-
phCore runs upto 2-thread OoO mode and shifts to up to 8 InO
threads once more than two threads are active; the study compares
2-OoO and 6-InO cases, the latter matching the register-file limit.
FIFOShelf is roof-lined by modeling 3 OoO threads (the register-
constrained maximum) with a doubled ROB dedicated to the OoO
path, giving an optimistic upper bound.

Equivalent SHADOW configurations are evaluated for direct
performance comparison.

5 Evaluation of SHADOW
This section evaluates SHADOW across memory- and compute-
bound workloads under various configurations.

5.1 Performance of SHADOW Across Diverse
Workloads

Figure 10 shows that TLP-heavy workloads (Backprop, APSP, TSP)
gain most from mixed OoO+InO threads, whereas ILP-centric,
cache-sensitive kernels (dense MM, nn, Pathfinder) slow down as
extra threads raise cache/RF/ROB pressure. Hence the best thread
mix varies with each benchmark’s ILP-vs-TLP balance and cache
sensitivity; no single uniform policy wins everywhere.

The optimal configuration for each benchmark is influenced by
three primary factors: (1) ILP vs. TLP: ILP-heavy kernels prefer
a few wide OoO threads, whereas TLP-rich kernels benefit from
adding lightweight InO threads. (2) SharedResources: Pressure on
RF, SQ, and ROB dictates whether additional threads enhance per-
formance or introduce bottlenecks. (3) Cache Sensitivity: Cache-
bound kernels prefer low-contention setups; too many threads
exacerbate cache pressure and negatively impact overall perfor-
mance.

Table 3 links each benchmark’s ILP/TLP balance, resource pres-
sure, and cache behavior to its best setting: mixed OoO + InO excels
when both ILP and TLP are available (Backprop, APSP), whereas
cache-bound kernels (Heartwall, nn) peak with one OoO thread.
These mappings show how workload traits direct the configuration
that delivers the highest speedup.

5.2 Performance of SHADOW Across
Workloads with Varying Cache Miss Rates

Impact of SHADOW Configurations on High-Miss-Rate Work-
loads. Figure 11 shows that cache-insensitive kernels (APSP, Back-
prop, Heartwall) favor a mixed design. Beyond two OoO threads,
ROB/RF/SQ contention erodes gains; pure InO scaling, in turn,
starves ILP. A 1-OoO + 4-InO mix best balances ILP and TLP, rais-
ing performance by 1.47 × while keeping keeping the resource
pressure on ROB, RS, LSQ, RF below the contention threshold.

Impact of SHADOW Configurations on Low-Miss-Rate Workloads.
Figure 12 shows SHADOW’s speedup over the 1 OoO thread base-
line for Dense Matrix Multiplication, BC, TSP, NN, and Pathfinder,
compute-bound benchmarks with low L1 DCache miss rates. These
workloads favor single-threaded execution, as adding threads in-
creases conflict misses, degrading performance. All configurations
perform worse than the baseline due to higher cache contention.

High-Miss-Rate Benchmarks.
• APSP: Performance scales with thread count as added TLP
complements ILP without harming cache performance. The
2 OoO-2 InO configuration outperforms 3 OoO by avoiding
register file contention and store queue bottlenecks.
• Backprop: The 1 OoO-3 InO configuration best balances ILP
and TLP, maximizing TLP while avoiding structural hazards
like rename register shortages or ROB constraints, all while
maintaining stable cache performance.
• Heartwall: The 1 OoO configuration achieves the best per-
formance. Despite a high L1 D-cache miss rate, L2 misses
remain low. Adding more threads significantly increases L2
misses, degrading performance.

Low-Miss-Rate Benchmarks.
• Tiled Dense Matrix Multiplication, NN, and Pathfinder:
Performance declines as more threads increase cache con-
tention. While TLP improves, conflict misses reduce ILP in
the OoO thread. NN and Pathfinder are highly sensitive, with
any extra thread causing slowdowns. In Dense Matrix Mul-
tiplication, 2 OoO threads achieve 1.2× speedup, balancing
TLP gains against ILP loss, but adding more threads degrades
performance.
• BC: The 2 OoO-1 InO configuration performs best, as BC
maintains stable cache miss rates, preserving ILP while lever-
aging additional TLP.
• TSP: The 3 OoO configuration is optimal. While D-cache
misses slightly increase with more threads, L2 misses drop
significantly, improving ILP as TLP aids L2 prefetching, lead-
ing to performance gains.

Configuring SHADOW for Optimal Performance. There is no sin-
gle best SHADOW configuration for all workloads. The effective-
ness of additional in-order threads depends on the ILP-TLP tradeoff
of each benchmark. Some workloads benefit from more TLP (e.g.,
Backprop, APSP), while others rely heavily on ILP and suffer from
cache contention when additional threads are added (e.g., Dense
MM). The configurability of SHADOW allows users to select the

9

MICRO 2025, October 18–22, 2025, Seoul, Korea Chaturvedi et al.

APSP BC dense MM backprop heartwall nn pathfinder TSP

1

2

3

Sp
ee

du
p

2-OoO
3-OoO
1-OoO+1-InO

1-OoO+2-InO
1-OoO+3-InO
1-OoO+4-InO

2-OoO+1-InO
2-OoO+2-InO
6-InO

Figure 10: Per-workload speedup for various SHADOW thread configurations.

Benchmark Best Config Speedup Characterization Rationale for Best Config
TSP [5] 3 OoO 1.7× TLP-rich L2 misses drop; TLP helps ILP via prefetching
APSP [5] 2 OoO-2 InO 1.56× Resource Pressure Additional threads cause RF and SQ contention
BC [12] 2 OoO-1 InO 1.37× Resource Pressure Additional threads cause RF contention
Backprop [12] 1 OoO-3 InO 3.16× Resource Pressure Additional threads cause RF, ROB and cache contention
Tiled Dense MM 2 OoO 1.2× Cache sensitivity 2 OoO balances ILP/TLP; more threads degrade cache
Heartwall [12] 1 OoO 1× Cache sensitivity Conflict misses rise with more threads
Pathfinder [5] 1 OoO 1× Cache sensitivity Conflict misses rise with more threads
nn [5] 1 OoO 1× Cache sensitivity Conflict misses rise with more threads
Average – 1.36× – –

Table 3: Best configuration, speedup, and explanation for each benchmark. OoO = out-of-order, InO = in-order, RF = register
file, SQ = store queue, ROB = reorder buffer.

2-
Oo

O

3-
Oo

O

6-
In

O

1-
Oo

O+
1-

In
O

1-
Oo

O+
2-

In
O

1-
Oo

O+
3-

In
O

1-
Oo

O+
4-

In
O

2-
Oo

O+
1-

In
O

2-
Oo

O+
2-

In
O

Thread Configuration

0.8

1.0

1.2

1.4

Sp
ee

du
p

Figure 11: Geometric mean performance of SHADOW config-
urations on high D-cachemiss rate benchmarks from Table 2,
normalized to a single-threaded OoO core.

2-
Oo

O

3-
Oo

O

6-
In

O

1-
Oo

O+
1-

In
O

1-
Oo

O+
2-

In
O

1-
Oo

O+
3-

In
O

1-
Oo

O+
4-

In
O

2-
Oo

O+
1-

In
O

2-
Oo

O+
2-

In
O

Thread Configuration

0.6

0.8

1.0

Sp
ee

du
p

Figure 12: Geometric mean performance of SHADOW config-
urations on low D-cache miss rate benchmarks from Table 2,
normalized to a single-threaded OoO core.

optimal configuration for their specific workload, enabling adaptive
performance tuning based on application characteristics.

5.3 Characterization of SHADOW on SpMM
Beyond evaluating SHADOW across diverse workloads, a detailed
analysis is conducted on sparse matrix multiplication (SpMM).

50
%

60
%

70
%

80
%

85
%

90
%

95
%

98
%

99
%

Sparsity Levels

1

2

3

Sp
ee

du
p

2-OoO
6-InO
1-OoO+4-InO
FIFOShelf

Figure 13: Performance of SHADOWwith varying degrees
of sparsity for an 8 wide CPU over 1 OoO thread.

SpMM serves as a controlled testbed to assess SHADOW’s adapt-
ability across varying cache miss rates by adjusting matrix sparsity
and size. While matrices maintain uniform sparsity across rows,
individual elements are randomly distributed, disrupting spatial
locality and limiting the effectiveness of hardware prefetchers. This
results in higher cache miss rates, making SpMM an ideal work-
load to evaluate SHADOW’s ability to balance ILP and TLP under
memory constraints. Using Gustavson’s algorithm [24], we system-
atically vary sparsity and matrix size to characterize SHADOW’s
response to different memory access patterns.

We compare four SHADOW configurations: (1) 1 OoO, (2) 2
OoO, (3) 1 OoO + 4 InO, and (4) 6 InO. This analysis demonstrates
how SHADOW dynamically balances ILP and TLP to optimize
performance across different sparsity levels.

5.3.1 Varying Degrees of Sparsity. SHADOW’s performance was
evaluated on SpMM using 600 × 600 matrices with sparsity rang-
ing from 50% to 99% (Figures 13 and 14 for 8- and 4-wide CPUs,
respectively). At lower sparsity, adding 2-OoO threads improves
performance over a 1-OoO thread. However, as ILP diminishes
with increasing sparsity, six InO threads surpass two OoO threads.
FIFOShelf achieves performance comparable to a 2-OoO-thread

10

SHADOW: Simultaneous Multi-Threading Architecture with Asymmetric Threads MICRO 2025, October 18–22, 2025, Seoul, Korea

Table 4: Hardware overhead of SHADOW

HW Structure Components Quantity / Size
Thread Control State Registers General-purpose registers, Link register, Program counter and Current Program Status Register 68 Registers
Thread Control Block Thread State Information, Thread Local Storage (TLS) Pointer, Stack Pointer, Thread ID, Priority Information,

Pointers to resources
1664 Bits

Circular FIFO Queues 20 Entries per thread 5120 Bits
Multiplexers and Demultiplexers Added in Fetch, Decode, Rename and Issue stages 4
Fetch Queues Queue to store 8 fetched instructions 2048 Bits
Scoreboard Scoreboard with six multi-ported tables, one dedicated per thread 2688 Bits

50
%

60
%

70
%

80
%

85
%

90
%

95
%

98
%

99
%

Sparsity Levels

1

2

3

Sp
ee

du
p

2-OoO
6-InO
1-OoO+4-InO
FIFOShelf

Figure 14: Performance of SHADOWwith varying degrees
of sparsity for a 4 wide CPU over 1 OoO thread.

50% 60% 70% 80% 85% 90% 95% 98% 99%
% Sparsity

0
20
40
60

L2
 C

ac
he

 M
is

s
R

at
e

(%
) 1-OoO

2-OoO
6-InO
1-OoO+4-InO

Figure 15: Change in miss rate for different thread configu-
rations.

90
0x

90
0

80
0x

80
0

70
0x

70
0

60
0x

60
0

50
0x

50
0

40
0x

40
0

Matrix Size

1.0
1.5
2.0
2.5

Sp
ee

du
p 2-OoO 6-InO 1-OoO+4-InO

Figure 16: Performance of SHADOW with varying matrix
size for 95% sparsity for an 8 wide CPU over 1 OoO thread.

90
0x

90
0

80
0x

80
0

70
0x

70
0

60
0x

60
0

50
0x

50
0

40
0x

40
0

Matrix Size

1.0

1.5

2.0

2.5

Sp
ee

du
p

2-OoO 6-InO 1-OoO+4-InO

Figure 17: Performance of SHADOW with varying matrix
size for 90% sparsity for a 4 wide CPU over 1 OoO thread.

configuration. Its instruction streams still contend for shared struc-
tures—most critically the register file (for renaming) and the load/store
queues, which limits its overall gain. SHADOW’s 1 OoO + 4 InO

configuration achieves the highest performance up to 95%, effec-
tively balancing ILP and TLP.

On the 8-wide core, 1 OoO + 4 InO peaks at 3.1 × speed-up (99%
sparse) and averages 1.33 × over the single-OoO baseline. Relative
to 2 OoO it delivers 1.72 × (avg. 1.20 ×); to 6 InO, 1.43 × (avg. 1.20
×); and over FIFOShelf, 1.78 × (avg. 1.40 ×). Its lead over pure OoO
widens as sparsity—and thus TLP—rises, while its edge over InO-
only designs is greatest at lower sparsity, where the OoO thread
can still harvest ILP. TThe 4-wide core follows suit, also peaking at
3.1 × and averaging 1.56 ×.

Figure 18 shows IPC trends as sparsity increases. At 70% sparsity,
1 OoO thread achieves 4.0 IPC; adding additional threads reduces
IPC due to higher L2 conflict misses. At 85% sparsity, OoO-only
IPC falls further, yet the 1 OoO + 4 InO asymmetric configuration
maintains an edge at 3.4 IPC, nearly matching the single-OoO’s 3.7
IPC. Beyond 95% sparsity, 1 OoO + 4 InO best balances ILP and TLP,
delivering the highest IPC of 1.4 among all configurations.

5.3.2 L2 Miss Rate Across Various Thread Configurations. Figure 15
shows the L2 cache miss rate for different configurations: a single
OoO thread, two OoO threads, six InO threads, and SHADOW
(1 OoO + 4 InO). At 50% sparsity, the L2 miss rate is low (5%)
but increases with additional threads. At 99% sparsity, it peaks at
73% for a single OoO thread due to the irregular access pattern.
Despite a 99% sparse 600×600matrix containing only 7200 elements,
high L2 misses occur as the result matrix must be loaded from
DRAM, the extreme sparsity prevents effective prefetching, limiting
cache efficiency. Overall, while more threads lead to a small rise in
L2 misses, the impact remains limited and does not significantly
degrade cache performance across evaluated configurations.

When modeling a more aggressive L2 cache Access-Map Pattern
Matching prefetcher [30], the relative SMT performance remains
unchanged. On a 98%-sparse 600×600 SpMM, L2 misses drop from
63% to 32% with this prefetcher, yet an 8-wide CPU still achieves a
1.19× speedup with 2-OoO threads, 1.94× with 6-InO threads, and
1.93× with the 1-OoO + 4-InO asymmetric SMT.

Adding a 256 MB L3 cache did not alter the L2 miss rate for a 95%-
sparse 600×600 SpMM, but it did increase the average DRAM access
latency. As a result, relative to a single OoO core, two OoO threads
now achieve a 1.35× speedup, six InO threads reach 1.76×, and
the 1 OoO + 4 InO asymmetric configuration remains the highest
performing at 1.95×.

5.3.3 VaryingMatrix Sizes. Figures 16 (8-wide CPU) and 17 (4-wide
CPU) show SHADOW’s performance on 95% sparse SpMM across
different matrix sizes. Across both CPU widths, SHADOW (1 OoO +
4 InO) outperforms 2 OoO and 6 InO configurations, demonstrating

11

MICRO 2025, October 18–22, 2025, Seoul, Korea Chaturvedi et al.

1-O
oO

2-O
oO

6-I
nO

1-O
oO

+4-I
nO

0

1

2

3

4

IP
C

50% Sparse
1-O

oO
2-O

oO
6-I

nO

1-O
oO

+4-I
nO

0

1

2

3

4

IP
C

70% Sparse
1-O

oO
2-O

oO
6-I

nO

1-O
oO

+4-I
nO

0

1

2

3

4

85% Sparse
1-O

oO
2-O

oO
6-I

nO

1-O
oO

+4-I
nO

0.0

0.5

1.0

1.5

98% Sparse

Tid:0 Tid:1 Tid:2 Tid:3 Tid:4 Tid:5

Figure 18: Breakdown of IPC contribution from each thread with varying degrees of sparsity over 1 OoO thread.

1-O
oO

2-O
oO

6-I
nO

1-O
oO

+4-I
nO

0

200

400

600

To
ta

l I
te

ra
tio

ns

50% Sparse
1-O

oO
2-O

oO
6-I

nO

1-O
oO

+4-I
nO

70% Sparse
1-O

oO
2-O

oO
6-I

nO

1-O
oO

+4-I
nO

85% Sparse
1-O

oO
2-O

oO
6-I

nO

1-O
oO

+4-I
nO

98% Sparse

Tid:0 Tid:1 Tid:2 Tid:3 Tid:4 Tid:5

Figure 19: Distribution of work across threads with dynamic work stealing for various degrees of sparsity.

the effectiveness of its asymmetric multithreading. On an 8-wide
CPU, it achieves up to 1.7× speedup over a single OoO thread, while
on a 4-wide CPU, it reaches 1.82×, efficiently utilizing resources
across varying matrix sizes.

5.3.4 Benefit of Dynamic Work Stealing Across Threads. SHADOW
dynamically balances workload distribution through work stealing
(Algorithm 1). Threads acquire more work upon completing as-
signed chunks, with the OoO thread taking a larger share when ILP
is high, and distribution equalizing as ILP decreases. Figure 19 shows
how SHADOW adjusts workload allocation with a CHUNK_SIZE
of 1 based on IPC. At 50%, 70% sparsity and 85%, the OoO thread’s
high IPC allows it to process more iterations. At 98% sparsity, de-
clining IPC shifts more work to in-order threads, leading to an even
distribution. By adapting to workload characteristics, SHADOW
effectively balances ILP and TLP, optimizing parallelism while sim-
plifying workload management for programmers.

Varying CHUNK_SIZE across 1, 5, 10, 25, 50 for a 95% sparse
matrix shows that OoO-only and InO-only configurations are in-
sensitive to chunk size, while the 1 OoO + 4 InO setup is modestly
affected: its speedup stays at 1.53× for CHUNK_SIZE = 1, falls
slightly to 1.51× at 25, and drops to 1.25× at 50.

5.4 Area and Power Overhead of SHADOW
Table 4 summarizes SHADOW’s hardware overhead. Despite sup-
porting multiple threads, the PRF remains unchanged, with each
thread adding minimal state via Thread Control State Registers
and a Thread Control Block (TCB). Pipeline bandwidth is unaf-
fected, as SHADOW employs per-thread fetch queues with simple
multiplexers/demultiplexers. Unlike OoO threads, InO threads by-
pass renaming and ROB allocation, relying instead on lightweight
FIFO queues. The reservation station size, CAM complexity, and
ROB remain unchanged. Using a modified McPAT [38], we esti-
mate SHADOW’s area and power overhead to be just 1% over a
high-performance core.

6 Related Work
Prior work has explored various techniques to improve ILP and TLP
on CPUs. This section summarizes key approaches and contrasts
them with SHADOW’s design.

SMT enhances TLP by allowing multiple threads to share execu-
tion resources [19, 28, 59, 60, 64]. Traditional SMT treats all threads
as microarchitecturally identical, limiting its ability to adapt to
workload characteristics. Prior efforts introduced thread prioriti-
zation and resource partitioning [18, 43, 54], but these still rely on
symmetric thread execution. SHADOW breaks this limitation by
integrating OoO threads with multiple lightweight InO threads,
enabling dynamic ILP-TLP balancing.

Prior heterogeneous cores (TRIPS EDGE [52], Tilera TILE-Gx
[49], Shasta/VISC [61]) rely on a new ISA, many replicated tiles,
or speculative core fusion. SHADOW instead keeps the legacy ISA
and runs OoO and lightweight InO threads side-by-side in one con-
ventional pipeline, blending ILP + TLP with only 1% extra logic.
SSMT [11] improves single-threaded performance by spawning
auxiliary microthreads to optimize branch prediction and cache
behavior.While these threads assist execution, they remain symmet-
ric OoO threads. SHADOW differs by using microarchitecturally
asymmetric threads, leveraging both deep ILP in OoO execution
and wider TLP through InO threads to improve multi-threaded
performance. Other approaches have reconfigured multi-core ar-
chitectures to improve TLP, combining simple cores for higher ILP
when needed [23, 29, 32, 63]. Unlike these inter-core techniques,
SHADOW enhances TLP within a single core, retaining the full
performance of an OoO core with only 1% area overhead. Similarly,
prior work has proposed migrating applications across heteroge-
neous cores to optimize utilization[2, 3, 35, 44], while SHADOW
improves intra-core parallelism without requiring core migration.

SHADOW achieves these benefits without increasing CPU area
overhead, modifying the ISA, or altering the programming model.
This preserves general-purpose flexibility while improving TLP and
maintaining single-threaded performance.

12

SHADOW: Simultaneous Multi-Threading Architecture with Asymmetric Threads MICRO 2025, October 18–22, 2025, Seoul, Korea

7 Conclusion
SHADOW introduces an asymmetric SMT architecture that bal-
ances ILP and TLP by running OoO and InO threads concurrently.
Unlike traditional SMT, it dynamically adapts to workload demands,
leveraging deep ILP in the OoO thread and high TLP in lightweight
InO threads. SHADOW is runtime-configurable, optimizing ex-
ecution based on workload characteristics. Across nine diverse
benchmarks SHADOW achieves up to 3.1× speedup and 1.33× av-
erage improvement over an OoO core, with just 1% area and power
overhead.

References
[1] Sarita V. Adve and Kourosh Gharachorloo. 1996. Shared Memory Consistency

Models: A Tutorial. Computer 29, 12 (1996), 66–76. https://doi.org/10.1109/2.
546611

[2] Anant Agarwal, Ricardo Bianchini, David Chaiken, Kirk L Johnson, David Kranz,
John Kubiatowicz, Beng-Hong Lim, Kenneth Mackenzie, and Donald Yeung.
1995. The MIT Alewife machine: Architecture and performance. ACM SIGARCH
Computer Architecture News 23, 2 (1995), 2–13.

[3] Anant Agarwal, John Kubiatowicz, David Kranz, Beng-Hong Lim, Donald Yeung,
Godfrey D’Souza, and Mike Parkin. 1993. Sparcle: An evolutionary processor
design for large-scale multiprocessors. IEEE micro 13, 3 (1993), 48–61.

[4] Andreas Agne, Markus Happe, Ariane Keller, Enno Lübbers, Bernhard Plattner,
Marco Platzner, and Christian Plessl. 2013. ReconOS: An operating system
approach for reconfigurable computing. IEEE Micro 34, 1 (2013), 60–71.

[5] Masab Ahmad, Farrukh Hijaz, Qingchuan Shi, and Omer Khan. 2015. Crono:
A benchmark suite for multithreaded graph algorithms executing on futuristic
multicores. In 2015 IEEE International Symposium on Workload Characterization.
IEEE, 44–55.

[6] Mehdi Alipour, Rakesh Kumar, Stefanos Kaxiras, and David Black-Schaffer. 2019.
Fiforder microarchitecture: Ready-aware instruction scheduling for ooo proces-
sors. In 2019 Design, Automation & Test in Europe Conference & Exhibition (DATE).
IEEE, 716–721.

[7] Arm Ltd. 2010. Cortex-A9 Technical Reference Manual: Register Re-
naming. https://developer.arm.com/documentation/ddi0388/h/Functional-
Description/About-the-functions/Register-renaming Accessed: 2025-02-20.

[8] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K Reinhardt, Ali
Saidi, Arkaprava Basu, Joel Hestness, Derek R Hower, Tushar Krishna, Somayeh
Sardashti, et al. 2011. The gem5 simulator. ACM SIGARCH computer architecture
news 39, 2 (2011), 1–7.

[9] Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul, Charles E.
Leiserson, Keith H. Randall, and Yuli Zhou. 1995. Cilk: An efficient multi-
threaded runtime system. In Proceedings of the Fifth ACM SIGPLAN Sympo-
sium on Principles and Practice of Parallel Programming. ACM, 207–216. https:
//doi.org/10.1145/209937.209958

[10] Christopher Celio, David A. Patterson, and Krste Asanović. 2015. The Berkeley
Out-of-Order Machine (BOOM): An Industry-Competitive, Synthesizable, Parame-
terized RISC-V Processor. Technical Report UCB/EECS-2015-167. EECS Depart-
ment, University of California, Berkeley. http://www2.eecs.berkeley.edu/Pubs/
TechRpts/2015/EECS-2015-167.html

[11] Robert S Chappell, Jared Stark, Sangwook P Kim, Steven K Reinhardt, and Yale N
Patt. 1999. Simultaneous subordinate microthreading (SSMT). In Proceedings of
the 26th annual international symposium on Computer architecture. 186–195.

[12] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W Sheaffer, Sang-
Ha Lee, and Kevin Skadron. 2009. Rodinia: A benchmark suite for heterogeneous
computing. In 2009 IEEE international symposium on workload characterization
(IISWC). Ieee, 44–54.

[13] Wikipedia contributors. 2025. ARM Neoverse. https://en.wikipedia.org/wiki/
ARM_Neoverse Accessed: 2025-02-21.

[14] Brett W. Coon, John Erik Lindholm, Gary Tarolli, Svetoslav D. Tzvetkov, John R.
Nickolls, and Ming Y. Siu. 2009. Register File Allocation. https://patents.google.
com/patent/US7634621B1/en

[15] Steven Dalton, Luke Olson, and Nathan Bell. 2015. Optimizing sparse ma-
trix—matrix multiplication for the gpu. ACM Transactions on Mathematical
Software (TOMS) 41, 4 (2015), 1–20.

[16] darchr. 2025. Grace Out-of-Order CPU Implementation. https:
//github.com/darchr/novoverse/blob/main/components/processors/grace/
gracecore/grace_o3_cpu.py Accessed: 2025-02-21.

[17] Kaushik Datta and et al. 2008. Stencil Computation Optimization and Auto-tuning
on Modern Microprocessors. Proceedings of the 2008 ACM/IEEE Conference on
Supercomputing (2008).

[18] Gautham K Dorai and Donald Yeung. 2002. Transparent threads: Resource
sharing in SMT processors for high single-thread performance. In Proceedings.

International Conference on Parallel Architectures and Compilation Techniques.
IEEE, 30–41.

[19] Susan J Eggers, Joel S Emer, Henry M Levy, Jack L Lo, Rebecca L Stamm, and
Dean M Tullsen. 1997. Simultaneous multithreading: A platform for next-
generation processors. IEEE micro 17, 5 (1997), 12–19.

[20] Adi Fuchs and David Wentzlaff. 2019. The accelerator wall: Limits of chip spe-
cialization. In 2019 IEEE International Symposium on High Performance Computer
Architecture (HPCA). IEEE, 1–14.

[21] Nigel Griffiths. 2019. POWER CPU Memory Affinity 3 - Scheduling Processes to
SMT and Virtual Processors. https://www.ibm.com/support/pages/power-cpu-
memory-affinity-3-scheduling-processes-smt-and-virtual-processors. Accessed:
2025-02-19.

[22] Dheevatsa Gupta and et al. 2020. Deep Learning Recommendation Model for
Personalization and Recommendation Systems. arXiv preprint arXiv:2008.07678
(2020).

[23] Shantanu Gupta, Shuguang Feng, Amin Ansari, and Scott Mahlke. 2010. Erasing
core boundaries for robust and configurable performance. In 2010 43rd Annual
IEEE/ACM International Symposium on Microarchitecture. IEEE, 325–336.

[24] Fred G Gustavson. 1978. Two fast algorithms for sparse matrices: Multiplication
and permuted transposition. ACM Transactions on Mathematical Software (TOMS)
4, 3 (1978), 250–269.

[25] Juan Gómez-Luna, Kaan Sari, Animesh Das, Saher Abulila, Sayantan Ghose,
Rachata Ausavarungnirun, and Onur Mutlu. 2022. Evaluating Machine Learning
Workloads on Memory-Centric Computing Systems. In 2022 IEEE International
Symposium on Workload Characterization (IISWC). IEEE, 1–12. https://doi.org/
10.1109/IISWC55726.2022.00012

[26] Sébastien Hily and André Seznec. 1999. Out-of-order execution may not be cost-
effective on processors featuring simultaneous multithreading. In Proceedings
Fifth International Symposium on High-Performance Computer Architecture. IEEE,
64–67.

[27] Glenn Hinton. 2001. The microarchitecture of the Pentium 4 processor. Intel
technology journal 5 (2001), 1–13.

[28] Hiroaki Hirata, Kozo Kimura, Satoshi Nagamine, Yoshiyuki Mochizuki, Akio
Nishimura, Yoshimori Nakase, and Teiji Nishizawa. 1992. An elementary proces-
sor architecture with simultaneous instruction issuing from multiple threads. In
Proceedings of the 19th annual international symposium on Computer architecture.
136–145.

[29] Engin Ipek, Meyrem Kirman, Nevin Kirman, and Jose F Martinez. 2007. Core
fusion: accommodating software diversity in chip multiprocessors. In Proceedings
of the 34th annual international symposium on Computer architecture. 186–197.

[30] Yasuo Ishii, Mary Inaba, and Kei Hiraki. 2011. Access map pattern matching for
high performance data cache prefetch. Journal of Instruction-Level Parallelism 13,
2011 (2011), 1–24.

[31] Xin Jin and Ningmei Yu. 2021. A defense mechanism against transient execution
attacks on SMT processors. IEICE Electronics Express (2021), 18–20210041.

[32] Changkyu Kim, Simha Sethumadhavan, Madhu S Govindan, Nitya Ranganathan,
Divya Gulati, Doug Burger, and Stephen W Keckler. 2007. Composable light-
weight processors. In 40th Annual IEEE/ACM International Symposium on Mi-
croarchitecture (MICRO 2007). IEEE, 381–394.

[33] Vladimir Kiriansky, Haoran Xu, Martin Rinard, and Saman Amarasinghe. 2018.
Cimple: Instruction and Memory Level Parallelism. In Proceedings of the 27th
International Conference on Parallel Architectures and Compilation Techniques
(PACT). ACM, 1–14. https://doi.org/10.1145/3243176.3243185

[34] Poonacha Kongetira, Kathirgamar Aingaran, and Kunle Olukotun. 2005. Niagara:
A 32-way multithreaded sparc processor. IEEE micro 25, 2 (2005), 21–29.

[35] Rakesh Kumar, Keith I. Farkas, Norman P. Jouppi, Parthasarathy Ranganathan,
and Dean M. Tullsen. 2003. Single-ISA Heterogeneous Multi-Core Architectures:
The Potential for Processor Power Reduction. In Proceedings of the 36th Annual
IEEE/ACM International Symposium on Microarchitecture. IEEE Computer Society,
81–92. https://doi.org/10.1109/MICRO.2003.1253185

[36] Hung Q Le, William J Starke, J Stephen Fields, Francis P O’Connell, Dung Q
Nguyen, Bruce J Ronchetti, Wolfram M Sauer, Eric M Schwarz, and Michael T
Vaden. 2007. Ibm power6 microarchitecture. IBM Journal of Research and Devel-
opment 51, 6 (2007), 639–662.

[37] Jure Leskovec, Anand Rajaraman, and Jeffrey D Ullman. 2014. Mining of Massive
Datasets. Cambridge University Press.

[38] Sheng Li, Jung Ho Ahn, Richard D Strong, Jay B Brockman, Dean M Tullsen, and
Norman P Jouppi. 2009. McPAT: An integrated power, area, and timing modeling
framework for multicore and manycore architectures. In Proceedings of the 42nd
annual ieee/acm international symposium on microarchitecture. 469–480.

[39] Jack L. Lo, Susan J. Eggers, Joel S. Emer, Henry M. Levy, Rebecca L. Stamm, and
Dean M. Tullsen. 1997. Converting thread-level parallelism to instruction-level
parallelism via simultaneous multithreading. ACM Transactions on Computer
Systems (TOCS) 15, 3 (1997), 322–354. https://doi.org/10.1145/263326.263382

[40] Jason Loew and Dmitry Ponomarev. 2008. Two-level reorder buffers: accelerating
memory-bound applications on SMT architectures. In 2008 37th International
Conference on Parallel Processing. IEEE, 182–189.

13

https://doi.org/10.1109/2.546611
https://doi.org/10.1109/2.546611
https://developer.arm.com/documentation/ddi0388/h/Functional-Description/About-the-functions/Register-renaming
https://developer.arm.com/documentation/ddi0388/h/Functional-Description/About-the-functions/Register-renaming
https://doi.org/10.1145/209937.209958
https://doi.org/10.1145/209937.209958
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-167.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-167.html
https://en.wikipedia.org/wiki/ARM_Neoverse
https://en.wikipedia.org/wiki/ARM_Neoverse
https://patents.google.com/patent/US7634621B1/en
https://patents.google.com/patent/US7634621B1/en
https://github.com/darchr/novoverse/blob/main/components/processors/grace/gracecore/grace_o3_cpu.py
https://github.com/darchr/novoverse/blob/main/components/processors/grace/gracecore/grace_o3_cpu.py
https://github.com/darchr/novoverse/blob/main/components/processors/grace/gracecore/grace_o3_cpu.py
https://www.ibm.com/support/pages/power-cpu-memory-affinity-3-scheduling-processes-smt-and-virtual-processors
https://www.ibm.com/support/pages/power-cpu-memory-affinity-3-scheduling-processes-smt-and-virtual-processors
https://doi.org/10.1109/IISWC55726.2022.00012
https://doi.org/10.1109/IISWC55726.2022.00012
https://doi.org/10.1145/3243176.3243185
https://doi.org/10.1109/MICRO.2003.1253185
https://doi.org/10.1145/263326.263382

MICRO 2025, October 18–22, 2025, Seoul, Korea Chaturvedi et al.

[41] Jason Lowe-Power, Abdul Mutaal Ahmad, Ayaz Akram, Mohammad Alian, Rico
Amslinger, Matteo Andreozzi, Adrià Armejach, Nils Asmussen, Brad Beckmann,
Srikant Bharadwaj, et al. 2020. The gem5 simulator: Version 20.0+. arXiv preprint
arXiv:2007.03152 (2020).

[42] Hadi Makrani, Sai Manoj Pudukotai Dinakarrao, Avesta Sasan, and Houman
Homayoun. 2018. A Comprehensive Memory Analysis of Data Intensive Work-
loads on Server Class Architecture. In Proceedings of the International Symposium
on Memory Systems. ACM, 125–136. https://doi.org/10.1145/3240302.3240319

[43] Artemiy Margaritov, Siddharth Gupta, Rekai Gonzalez-Alberquilla, and Boris
Grot. 2019. Stretch: Balancing qos and throughput for colocated server workloads
on smt cores. In 2019 IEEE International Symposium onHigh Performance Computer
Architecture (HPCA). IEEE, 15–27.

[44] Amirhossein Mirhosseini, Akshitha Sriraman, and Thomas F Wenisch. 2019.
Enhancing server efficiency in the face of killer microseconds. In 2019 IEEE
International Symposium on High Performance Computer Architecture (HPCA).
IEEE, 185–198.

[45] Andreas Moshovos. 2003. Checkpointing alternatives for high performance,
power-aware processors. In Proceedings of the 2003 international symposium on
Low power electronics and design. 318–321.

[46] Subhankar Pal, Jonathan Beaumont, Dong-Hyeon Park, Aporva Amarnath, Siy-
ing Feng, Chaitali Chakrabarti, Hun-Seok Kim, David Blaauw, Trevor Mudge,
and Ronald Dreslinski. 2018. Outerspace: An outer product based sparse ma-
trix multiplication accelerator. In 2018 IEEE International Symposium on High
Performance Computer Architecture (HPCA). IEEE, 724–736.

[47] Eric Qin, Ananda Samajdar, Hyoukjun Kwon, Vineet Nadella, Sudarshan Srini-
vasan, Dipankar Das, Bharat Kaul, and Tushar Krishna. 2020. Sigma: A sparse
and irregular gemm accelerator with flexible interconnects for dnn training. In
2020 IEEE International Symposium on High Performance Computer Architecture
(HPCA). IEEE, 58–70.

[48] Raghu Ramakrishnan and Johannes Gehrke. 2002. Database Management Systems.
McGraw-Hill.

[49] Carl Ramey. 2011. Tile-gx100 manycore processor: Acceleration interfaces and
architecture. In 2011 IEEE Hot Chips 23 Symposium (HCS). IEEE, 1–21.

[50] James Reinders. 2007. Intel Threading Building Blocks: Outfitting C++ for Multi-core
Processor Parallelism. O’Reilly Media. https://dl.acm.org/doi/10.5555/1352079.
1352134

[51] Yousef Saad. 2003. Iterative Methods for Sparse Linear Systems. Society for
Industrial and Applied Mathematics.

[52] Karthikeyan Sankaralingam, Ramadass Nagarajan, Haiming Liu, Changkyu Kim,
Jaehyuk Huh, Doug Burger, Stephen W Keckler, and Charles R Moore. 2003.
Exploiting ILP, TLP, and DLP with the polymorphous TRIPS architecture. In
Proceedings of the 30th annual international symposium on Computer architecture.
422–433.

[53] Faissal M Sleiman and Thomas F Wenisch. 2016. Efficiently scaling out-of-order
cores for simultaneous multithreading. ACM SIGARCH Computer Architecture
News 44, 3 (2016), 431–443.

[54] Allan Snavely and Dean M. Tullsen. 2000. Symbiotic Job Scheduling for a Si-
multaneous Multithreading Processor. In Proceedings of the 9th International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS IX). ACM, 234–244. https://doi.org/10.1145/378993.379244

[55] Jared Stark, Mary D Brown, and Yale N Patt. 2000. On pipelining dynamic instruc-
tion scheduling logic. In Proceedings of the 33rd annual ACM/IEEE international
symposium on Microarchitecture. 57–66.

[56] M Aater Suleman, Milad Hashemi, Chris Wilkerson, Yale N Patt, et al. 2012.
Morphcore: An energy-efficient microarchitecture for high performance ilp and
high throughput tlp. In 2012 45th Annual IEEE/ACM International Symposium on
Microarchitecture. IEEE, 305–316.

[57] Mohammadkazem Taram, Xida Ren, Ashish Venkat, and Dean Tullsen. 2022.
{SecSMT}: Securing {SMT} processors against {Contention-Based} covert
channels. In 31st USENIX Security Symposium (USENIX Security 22). 3165–3182.

[58] Daniel Townley and Dmitry Ponomarev. 2019. Smt-cop: Defeating side-channel
attacks on execution units in smt processors. In 2019 28th International Conference
on Parallel Architectures and Compilation Techniques (PACT). IEEE, 43–54.

[59] Dean M Tullsen, Susan J Eggers, Joel S Emer, Henry M Levy, Jack L Lo, and
Rebecca L Stamm. 1996. Exploiting choice: Instruction fetch and issue on an
implementable simultaneous multithreading processor. In Proceedings of the 23rd
annual international symposium on Computer architecture. 191–202.

[60] Dean M Tullsen, Susan J Eggers, and Henry M Levy. 1995. Simultaneous mul-
tithreading: Maximizing on-chip parallelism. In Proceedings of the 22nd annual
international symposium on Computer architecture. 392–403.

[61] Jim Turley. 2014. VISC Processor Secrets Revealed. EE Journal. https://www.
eejournal.com/article/20141203-softmachines2/ Online; accessed 2025-06-13.

[62] Hanrui Wang, Zhekai Zhang, and Song Han. 2021. Spatten: Efficient sparse atten-
tion architecture with cascade token and head pruning. In 2021 IEEE International
Symposium on High-Performance Computer Architecture (HPCA). IEEE, 97–110.

[63] Yasuko Watanabe, John D Davis, and David A Wood. 2010. WiDGET: Wisconsin
decoupled grid execution tiles. ACM SIGARCH Computer Architecture News 38, 3
(2010), 2–13.

[64] Wayne Yamamoto, Mauricio J Serrano, Adam R Talcott, Roger C Wood, and M
Nemirosky. 1994. Performance estimation of multistreamed, superscalar proces-
sors. In 1994 Proceedings of the Twenty-Seventh Hawaii International Conference
on System Sciences, Vol. 1. IEEE, 195–204.

[65] Yifan Yang, Joel S Emer, and Daniel Sanchez. 2024. Trapezoid: A Versatile Ac-
celerator for Dense and Sparse Matrix Multiplications. In 2024 ACM/IEEE 51st
Annual International Symposium on Computer Architecture (ISCA). IEEE, 931–945.

14

https://doi.org/10.1145/3240302.3240319
https://dl.acm.org/doi/10.5555/1352079.1352134
https://dl.acm.org/doi/10.5555/1352079.1352134
https://doi.org/10.1145/378993.379244
https://www.eejournal.com/article/20141203-softmachines2/
https://www.eejournal.com/article/20141203-softmachines2/

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 CPU Underutilization in Memory-Bound Workloads
	2.2 Limitations of Traditional SMT Architectures
	2.3 Why a Hybrid SMT Core is Needed Over Separate OoO and InO Cores
	2.4 SHADOW: A Balanced ILP-TLP Execution Model

	3 SHADOW
	3.1 Fetch and Decode
	3.2 Rename
	3.3 Context Switching and Register File Allocation
	3.4 Select and Wakeup
	3.5 Execute, Writeback, and Commit
	3.6 Branch Prediction
	3.7 Load and Store Queues
	3.8 Memory Consistency and Coherence
	3.9 Dynamic Work Distribution and Stealing Mechanism
	3.10 Impact on CPU Frequency
	3.11 Security Considerations
	3.12 Example of SHADOW's Impact on TLP and ILP Performance

	4 Evaluation Methodology
	5 Evaluation of SHADOW
	5.1 Performance of SHADOW Across Diverse Workloads
	5.2 Performance of SHADOW Across Workloads with Varying Cache Miss Rates
	5.3 Characterization of SHADOW on SpMM
	5.4 Area and Power Overhead of SHADOW

	6 Related Work
	7 Conclusion
	References

